Regularization of Certain Divergent Series of Polynomials

Liviu I. NICOLAESCU

Abstract

We investigate the generalized convergence and sums of series of the form $\sum_{n \geq 0} a_{n} \boldsymbol{T}^{n} P(x)$, where $P \in \mathbb{R}[x], a_{n} \in \mathbb{R}, \forall n \geq 0$, and $\boldsymbol{T}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is a linear operator that commutes with the differentiation $\frac{d}{d x}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$. Keywords: translation invariant operators, divergent series, summability. Mathematics Subject Classification (2000): 05A10, 05A19, 11B83, 40A30, 40G05, 40G10.

1 The main result

We consider series of the form

$$
\sum_{n \geq 0} a_{n} T^{n} P(x),
$$

where $P \in \mathbb{R}[x]$, and $\boldsymbol{T}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is a linear operator such that

$$
\begin{equation*}
T D=D T, \tag{*}
\end{equation*}
$$

where D is the differentiation operator $D=\frac{d}{d x}$. The condition (*) is equivalent with the translation invariance of \boldsymbol{T}, i.e.,

$$
\begin{equation*}
\boldsymbol{T} \boldsymbol{U}^{h}=\boldsymbol{U}^{h} \boldsymbol{T}, \quad \forall h \in \mathbb{R}, \tag{I}
\end{equation*}
$$

where $\boldsymbol{U}^{h}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is the translation operator

$$
\mathbb{R}[x] \ni p(x) \mapsto p(x+h) \in \mathbb{R}[x] .
$$

For simplicity we set $\boldsymbol{U}:=\boldsymbol{U}^{1}$. Clearly $\boldsymbol{U}^{h} \in \mathcal{O}$ so a special case of the series (\dagger) is the series

$$
\begin{equation*}
\sum_{n \geq 0} a_{n} \boldsymbol{U}^{n h} P(x)=\sum_{n \geq 0} a_{n} P(x+n h), \quad h \in \mathbb{R}, \tag{h}
\end{equation*}
$$

which is typically divergent.
We denote by \mathcal{O} the \mathbb{R}-algebra of translation invariant operators. We have a natural map

$$
\mathcal{Q}: \mathbb{R}[[t]] \rightarrow \mathcal{O}, \quad \mathbb{R}\left[[t] \ni \sum_{n \geq 0} c_{n} \frac{t^{n}}{n!} \mapsto \sum_{n \geq 0} \frac{c_{n}}{n!} D^{n}\right.
$$

It is known (see [1, Prop. 3.47]) that this map is an isomorphism of rings. We denote by $\boldsymbol{\sigma}$ the inverse of Q

$$
\boldsymbol{\sigma}: \mathcal{O} \rightarrow \mathbb{R}[[t]], \quad \mathcal{O} \ni \boldsymbol{T} \mapsto \boldsymbol{\sigma}_{\boldsymbol{T}} \in \mathbb{R}[[t]] .
$$

For $\boldsymbol{T} \in \mathcal{O}$ we will refer to the formal power series $\boldsymbol{\sigma}_{\boldsymbol{T}}$ as the symbol of the operator \boldsymbol{T}. More explicitely

$$
\boldsymbol{\sigma}_{\boldsymbol{T}}(t)=\sum_{n \geq 0} \frac{c_{n}(\boldsymbol{T})}{n!} t^{n}, \quad c_{n}(\boldsymbol{T})=\left.\left(\boldsymbol{T} x^{n}\right)\right|_{x=0} \in \mathbb{R}
$$

We denote by \mathbb{N} the set of nonnegative integers, and by Seq the vector space of real sequences, i.e., maps $a: \mathbb{N} \rightarrow \mathbb{R}$. Let $\mathbf{S e q}^{c}$ the vector subspace of Seq consisting of all convergent sequences.

A generalized notion of convergence ${ }^{1}$ or regularization method is a pair $\mu=\left({ }^{\mu} \lim , \mathbf{S e q}_{\mu}\right)$, where

- $\mathbf{S e q}_{\mu}$ is a vector subspace of $\mathbf{S e q}$ containing $\mathbf{S e q}^{c}$ and,
- ${ }^{\mu} \lim$ is a linear map

$$
{ }^{\mu} \lim : \mathbf{S e q}_{\mu} \rightarrow \mathbb{R}, \quad \mathbf{S e q}_{\mu} \ni a \mapsto{ }^{\mu} \lim _{n} a(n) \in \mathbb{R}
$$

such that for any $a \in \mathbf{S e q}^{c}$ we have

$$
{ }^{\mu} \lim a=\lim _{n \rightarrow \infty} a(n) .
$$

The sequences in $\mathbf{S e q}_{\mu}$ are called μ-convergent and ${ }^{\mu}$ lim is called the μ-limit. To any sequence $a \in \mathbf{S e q}$ we associate the sequence $\boldsymbol{S}[a]$ of partial sums

$$
\begin{equation*}
\boldsymbol{S}[a](n)=\sigma_{k=0}^{n} a(k) . \tag{1.1}
\end{equation*}
$$

A series $\sum_{n \geq 0} a(n)$ is said to by μ-convergent if the sequence $\boldsymbol{S}[a]$ is μ-convergent. We set

$$
{ }^{\mu} \sum_{n \geq 0} a(n):={ }^{\mu} \lim _{n} \boldsymbol{S}[a](n) .
$$

We say that ${ }^{\mu} \sum_{n>0} a(n)$ is the μ-sum of the series. The regularization method is said to be shift invariant if it satisfies the additional condition

$$
\begin{equation*}
{ }^{\mu} \sum_{n \geq 0} a(n)=a(0)+{ }^{\mu} \sum_{n \geq 1} a(n) . \tag{1.2}
\end{equation*}
$$

We refer to the classic [3] for a large collection of regularization methods.
For $x \in \mathbb{R}$ and $k \in \mathbb{N}$ we set

$$
[x]_{k}:=\left\{\begin{array}{ll}
\prod_{i=0}^{k-1}(x-i), & k \geq 1 \\
1, & k=0,
\end{array},\binom{x}{k}:=\frac{[x]_{k}}{k!}\right.
$$

We can now state the main result of this paper.

[^0]Theorem 1.1. Let μ be a regularization method, $\boldsymbol{T} \in \mathcal{O}$ and $f(t)=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{R}[[t]]$. Set $c:=c_{0}(\boldsymbol{T})=\boldsymbol{T} 1$. Suppose that f is μ-regular at $t=c$, i.e.,

$$
\text { for every } k \in \mathbb{N} \text { the series } \sum_{n \geq 0} a_{n}[n]_{k} c^{n-k} \text { is } \mu \text {-convergent. }
$$

We denote by $f^{(k)}(c){ }_{\mu}$ its μ-sum

$$
f^{(k)}(c)_{\mu}:={ }^{\mu} \sum_{n \geq 0} a_{n}[n]_{k} c^{n-k} .
$$

Then for every $P \in \mathbb{R}[x]$ the series $\sum_{n \geq 0} a_{n}\left(\boldsymbol{T}^{n} P\right)(x)$ is μ-convergent and its μ-sum is

$$
{ }^{\mu} \sum a_{n}\left(\boldsymbol{T}^{n} P\right)(x)=f(\boldsymbol{T})_{\mu} P(x)
$$

where $f(\boldsymbol{T})_{\mu} \in \mathcal{O}$ is the operator

$$
\begin{equation*}
f(\boldsymbol{T})_{\mu}:=\sum_{n \geq 0} \frac{f^{(k)}(c)_{\mu}}{k!}(\boldsymbol{T}-c)^{k} . \tag{1.3}
\end{equation*}
$$

Proof. Set $\boldsymbol{R}:=\boldsymbol{T}-c$ and let $P \in \mathbb{R}[x]$. Then

$$
\boldsymbol{R}=\sum_{n \geq 1} \frac{c_{n}(\boldsymbol{T})}{n!} D^{n}
$$

so that

$$
\begin{equation*}
\boldsymbol{R}^{n} P=0, \quad \forall n>\operatorname{deg} P \tag{1.4}
\end{equation*}
$$

In particular this shows that $f(\boldsymbol{T})_{\mu}$ is well defined. We have

$$
a_{n} \boldsymbol{T}^{n} P=a_{n}(c+\boldsymbol{R})^{n} P=a_{n} \sum_{k=0}^{n}\binom{n}{k} c^{n-k} \boldsymbol{R}^{k} P=\sum_{k=0}^{\operatorname{deg} P}\binom{n}{k} c^{n-k} \boldsymbol{R}^{k} P .
$$

At the last step we used (1.4) and the fact that

$$
\binom{n}{k}=0, \quad \text { if } k>n
$$

This shows that the formal series $\sum_{n \geq 0} a_{n}\left(\boldsymbol{T}^{n} P\right)(x)$ can be written as a finite linear combination of formal series

$$
\sum_{n \geq 0} a_{n}\left(\boldsymbol{T}^{n} P\right)(x)=\sum_{k=0}^{\operatorname{deg} P} \frac{\boldsymbol{R}^{k} P(x)}{k!}\left(\sum_{n \geq 0} a_{n}[n]_{k} c^{n-k}\right)
$$

From the linearity of the μ-summation operator we deduce

$$
{ }_{n \geq 0} a_{n}\left(\boldsymbol{T}^{n} P\right)(x)=\sum_{k=0}^{\operatorname{deg} P} \frac{\boldsymbol{R}^{k} P(x)}{k!}\left({ }_{n \geq 0} a_{n}[n]_{k} c^{n-k}\right)
$$

$$
=\left(\sum_{k=0}^{\operatorname{deg} P} \frac{f^{(k)}(c)_{\mu}}{k!} \boldsymbol{R}^{k}\right) P(x)=f(\boldsymbol{T})_{\mu} P(x)
$$

2 Some applications

To describe some consequences of Theorem 1.1 we need to first describe some classical facts about regularization methods.

For any sequence $a \in$ Seq we denote by $\boldsymbol{G}_{a}(t) \in \mathbb{R}[[t]]$ its generating series. We regard the partial sum construction \boldsymbol{S} in (1.1) as a linear operator $\boldsymbol{S}:$ Seq \rightarrow Seq. Observe that

$$
\boldsymbol{G}_{\boldsymbol{S}[a]}(t)=\frac{1}{1-t} \boldsymbol{G}_{a}(t) .
$$

We say that a regularization method $\mu_{1}=\left({ }^{\mu_{1}} \mathrm{lim}, \mathbf{S e q}_{\mu_{1}}\right)$ is stronger than the regularization method $\mu_{0}=\left({ }^{\mu_{1}} \lim , \mathbf{S e q}_{\mu_{0}}\right)$, and we write this $\mu_{0} \prec \mu_{1}$, if

$$
\mathbf{S e q}_{\mu_{0}} \subset \mathbf{S e q}_{\mu_{1}} \text { and }{ }^{\mu_{1}} \lim _{n} a(n)={ }^{\mu_{0}} \lim _{n} a(n), \quad \forall a \in \mathbf{S e q}_{\mu_{0}}
$$

The Abel regularization method ${ }^{2} A$ is defined as follows. We say that a sequence a is A convergent if

- the radius of convergence of the series $\sum_{n \geq 0} a_{n} t^{n}$ is at least 1 and
- the function $t \mapsto(1-t) \sum_{n \geq 0} a_{n} t^{n}$ has a finite limit as $t \rightarrow 1^{-}$.

Hence

$$
{ }^{A} \lim a(n)=\lim _{t \rightarrow 1^{-}}(1-t) \sum_{n \geq 0} a_{n} t^{n},
$$

and $\mathbf{S e q}_{A}$ consists of sequence for which the above limit exists and it is finite. Using (2) we deduce that a series $\sum_{n \geq 0} a(n)$ is A-convergent if and only if the limit

$$
\lim _{t \rightarrow 1^{-}} \sum_{n \geq 0} a_{n} t^{n}
$$

exists and it is finite. We have the following immediate result.
Proposition 2.1. Suppose that $f(z)$ is a holomorphic function defined in an open neighborhood of the set $\{1\} \cup\{|z|\} \subset \mathbb{C}$. If $\sum_{n \geq 0} a_{n} z^{n}$ is the Taylor series expansion of f at $z=0$ then the corresponding formal power series $[f]=\sum_{n \geq 0} a_{n} t^{n}$ is A-regular at $t=1$,

$$
[f]^{(k)}(1)_{A}=f^{k}(1)
$$

and the series

$$
[f](r)_{A}=\sum_{k} \frac{[f]^{(k)}(1)_{A}}{k!} r^{k}
$$

coincides with the Taylor expansion of f at $z=1$, and it converges to $f(1+r)$.

[^1]Corollary 2.2. Suppose that $f(z)$ is a holomorphic function defined in an open neighborhood of the set $\{1\} \cup\{|z|\} \subset \mathbb{C}$ and $\sum_{n>0} a_{n} z^{n}$ is the Taylor series expansion of f at $z=0$. Then for every \boldsymbol{T} in \mathcal{O} such that $c_{0}(\boldsymbol{T})=1$, any $P \in \mathbb{R}[x]$, and any $x \in \mathbb{R}$ we have

$$
{ }^{A} \sum_{n} a_{n} \boldsymbol{T}^{n} P(x)=\sum_{k \geq 0} \frac{f^{k}(1)}{k!}(\boldsymbol{T}-1)^{k} P(x)
$$

Let $k \in \mathbb{N}$. A sequence $a \in \mathbf{S e q}$ is said to be C_{k}-convergent (or Cesàro convergent of order k) if the limit

$$
\lim _{n \rightarrow \infty} \frac{\boldsymbol{S}^{k}[a](n)}{\binom{n+k}{k}}
$$

exists and it is finite. We denote this limit by ${ }^{C_{k}} \lim a(n)$. A series $\sum_{n \geq 0} a(n)$ is said to be C_{k}-convergent if the sequence of partial sums $\boldsymbol{S}[a]$ is C_{k} convergent. Thus the C_{k}-sum of this series is

$$
C_{k} \sum_{n \geq 0} a(n)=\lim _{n \rightarrow \infty} \frac{\boldsymbol{S}^{k+1}[a](n)}{\binom{n+k}{k}}
$$

More explicitly, we have (see [3, Eq.(5.4.5)])

$$
C_{k} \sum_{n \geq 0} a(n)=\lim _{n \rightarrow \infty} \frac{1}{\binom{n+k}{k}}\left(\sum_{\nu=0}^{n}\binom{\nu+k}{k} a(n-\nu)\right)
$$

Hence

$$
C_{k} \sum_{n \geq 0} a(n) \Longleftrightarrow \boldsymbol{S}^{k+1}[a](n) \sim A\binom{n+k}{k} \sim A \frac{n^{k}}{k!}
$$

where

$$
a \sim b \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{a(n)}{b(n)}=1,
$$

if $a(n), b(n) \neq 0$, for $n \gg 0$.
The C_{0} convergence is equivalent with the classical convergence and it is known (see [3, Thm. 43, 55]) that

$$
C_{k} \prec C_{k^{\prime}} \prec A, \quad \forall k<k^{\prime} .
$$

Given this fact, we define a sequence to be C-convergent (Cesàro convergent) if it is $C_{k^{-}}$ convergent for some $k \in \mathbb{N}$. Note that $C \prec A$. Both the C and A methods are shift invariant, i.e., they satisfy the condition (1.2).

We want to comment a bit about possible methods of establishing C-convergence. To formulate a general strategy we need to introduce a classical notation. More precisely, if $f(t)=\sum_{n>0} a_{n} t^{n}$ is a formal power series we let $\left[t^{n}\right] f(t)$ denote the coefficient of t^{n} in this power series, i.e. $\left[t^{n}\right] f(t)=a_{n}$.

Let $f(t)=\sum_{n \geq 0} a_{n} t^{n}$. Then the series $\sum_{n \geq 0} a_{n} t^{n} C$-converges to A if and only if there exists a nonnegative real number α such that

$$
\left[t^{n}\right]\left((1-t)^{-(\alpha+1)} f(t)\right) \sim A \frac{n^{\alpha}}{\Gamma(\alpha+1)}
$$

where Γ is Euler's Gamma function. For a proof we refer to [3, Thm. 43].
Definition 2.3. We say that a power series $f(t)=\sum_{n \geq 0} a_{n} t^{n}$ is Cesàro convenient (or C-convenient) at 1 if the following hold.
(i) The radius of convergences of the series is ≥ 1
(ii) The function f is regular at $z=1$ and has finitely many singularities $\zeta_{1}, \ldots, \zeta_{\nu} \neq 1$ on the unit circle $\{|z|=1\}$.
(iii) There exist $\varepsilon>0$ and $\theta \in\left(0, \frac{\pi}{2}\right)$ such that f admits a continuation to the dimpled disk

$$
\Delta_{\varepsilon, \theta}:=\left\{z \in \mathbb{C} ; \quad|z|<1+\varepsilon, \quad \arg \left(\frac{z}{\zeta_{j}}-1\right)>\theta, \quad \forall j=1, \ldots, \nu\right\}
$$

(iv) For every singular point ζ_{j} there exists a positive integer m_{j} such that

$$
f(z)=O\left(\left(z-\zeta_{j}\right)^{-m_{j}}\right) \text { as } z \rightarrow \zeta_{j}, z \in \Delta .
$$

The results in [2, Chap. VI] implies that the collection \mathcal{R}_{C} of C-convenient power series is a ring satisfying

$$
f \in \mathcal{R}_{C} \Longleftrightarrow \frac{d f}{d t} \in \mathcal{R}_{C}
$$

Invoking [2, Thm VI.5] we deduce the following useful consequence.
Corollary 2.4. Let $f \in \mathbb{R}[[t]]$ be a power series C-convenient at 1 . Then f is C-regular at 1 and

$$
f^{k}(1)_{C}=f^{(k)}(1)_{A}=f^{(k)}(1)
$$

Using [2, VII. 7] we obtain the following useful result.
Corollary 2.5. (a) The power series

$$
(1+t)^{-m}=\sum_{n \geq 0}\binom{n+m-1}{n}(-t)^{n}, \quad m \geq 1, \quad \log (1+t)=\sum_{n \geq 1}(-1)^{n+1} \frac{t^{n}}{n}
$$

are C-regular at 1.
(b) If $f(z)$ is an algebraic function defined on the unit disk $|z|<1$ and regular at $z=1$ then the Taylor series of f at $z=0$ is C-regular at 1 .

Recall that the Cauchy product of two sequences $a, b \in$ Seq is the sequence $a * b$,

$$
a * b(n)=\sum_{i=0}^{n} a(n-i) b(i), \quad \forall n \in \mathbb{N}
$$

A regularization method is said to be multiplicative if

$$
{ }^{\mu} \sum_{n} a * b(n)=\left({ }^{\mu} \sum_{n} a(n)\right)\left({ }^{\mu} \sum_{n} b(n)\right)
$$

for any μ-convergent series $\sum_{n \geq 0} a(n)$ and $\sum_{n \geq 0} b(n)$. The results of [3, Chap.X] show that the C and A methods are multiplicative.

For any regularization method μ and $c \in \mathbb{R}$ we denote by $\mathbb{R}[[t]]_{\mu}$ the set of series that are μ-regular at $t=1$.

Proposition 2.6. Let μ be a multiplicative regularization method. Then $\mathbb{R}[[t]]_{\mu}$ is a commutative ring with one and we have the product rule

$$
(f \cdot g)^{(n)}(1)_{\mu}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(1)_{\mu} \cdot g^{(n-k)}(1)_{\mu}
$$

Moreover, if $\boldsymbol{T} \in \mathcal{O}$ is such that $c_{0}(T)=1$ then the map

$$
\mathbb{R}[[t]]_{\mu} \ni f \mapsto f(\boldsymbol{T})_{\mu} \in \mathcal{O}
$$

is a ring morphism.
Proof. The product formula follows from the iterated application of the equalities

$$
D_{t}(f g)=\left(D_{t} f\right) g+f\left(D_{t} g\right), \quad(f g)(1)_{\mu}=f(1)_{\mu} \cdot g(1)_{\mu}, \quad f^{\prime}(1)_{\mu}=\left(D_{t} f\right)(1)_{\mu}
$$

where $D_{t}: \mathbb{R}[[t]] \rightarrow \mathbb{R}[[t]]$ is the formal differentiation operator $\frac{d}{d t}$. The last statement is an immediate application of the above product rule.

Remark 2.7. The inclusion $\mathbb{R}[[t]]_{C} \subset \mathbb{R}[[t]]_{A}$ is strict. For example, the power series

$$
f(z)=e^{1 /(1+z)}
$$

satisfies the assumption of Proposition 2.1 so that the associated formal power series $[f]$ is A-regular at 1. On the other hand, the arguments in $[3, \S 5.12]$ show that $[f]$ is not C-regular at 1.

Consider the translation operator $\boldsymbol{U}^{h} \in \mathcal{O}$. From Taylor's formula

$$
p(x+h)=\sum_{n \geq 0} \frac{h^{n}}{n!} D^{n} p(x)
$$

we deduce that

$$
\boldsymbol{\sigma}_{U^{h}}(t)=e^{t h}
$$

Set $\Delta_{h}:=\boldsymbol{U}^{h}-1$. Using Corollary 2.5 and Theorem 1.1 we deduce the following result.

Corollary 2.8. For any $P \in \mathbb{R}[x]$ we have

$$
\begin{equation*}
{ }^{C} \sum_{n \geq 0}(-1)^{n} P(x+n h)=\frac{1}{2}\left(\sum_{n \geq 0} \frac{(-1)^{n}}{2^{n}} \Delta_{h}^{n}\right) P(x) . \tag{2.1}
\end{equation*}
$$

Observe that

$$
\left(1+\frac{1}{2} \Delta_{h}\right)\left(\sum_{n \geq 0} \frac{(-1)^{n}}{2^{n}} \Delta_{h}^{n}\right)=1
$$

so that $\frac{1}{2} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{n}} \Delta_{h}^{n}$ is the inverse of the operator $2+\Delta_{h}$. We thus have

$$
\begin{equation*}
{ }^{C} \sum_{n \geq 0}(-1)^{n} P(x+n h)=\left(2+\Delta_{h}\right)^{-1} P(x)=\left(1+\boldsymbol{U}^{h}\right)^{-1} P(x) \tag{2.2}
\end{equation*}
$$

Remark 2.9. Here is a heuristic explanation of the equality (2.2) assuming the Cesàro convergence of the series $\sum_{n \geq 0}(-1)^{n} P(x+n h)$. Denote by $S(x)$ the Cesàro sum of this series. Then

$$
\begin{gathered}
S(x+h)=^{C} \sum_{n \geq 0}(-1)^{n} P(x+(n+1) h) \\
\stackrel{(1.2)}{=}-{ }^{C} \sum_{n \geq 0}(-1)^{n} P(x+h)+P(x)=-S(x)+P(x) .
\end{gathered}
$$

Hence

$$
S(x+h)+S(x)=P(x), \quad \forall x \in \mathbb{R}
$$

If we knew that $S(x)$ is a polynomial we would then deduce

$$
S(x)=\left(1+\boldsymbol{U}^{h}\right)^{-1} P(x)
$$

The inverse of $1+\boldsymbol{U}^{h}$ can be explicitly expressed using Euler numbers and polynomials, [4, Eq. (14), p.134]. The Euler numbers E_{k} are defined by the Taylor expansion

$$
\frac{1}{\cosh t}=\frac{2}{e^{t}+e^{-t}}=\sum_{k \geq 0} \frac{E_{k}}{k!} t^{k}
$$

Since $\cosh t$ is an even function we deduce that $E_{k}=0$ for odd k. They satisfy the recurrence relation

$$
\begin{equation*}
E_{n}+\binom{n}{2} E_{n-2}+\binom{n}{4} E_{n-4}+\cdots=0, \quad n \geq 2 \tag{2.3}
\end{equation*}
$$

Here are the first few Euler numbers.

n	0	2	4	6	8	10	12	14	16
E_{n}	1	-1	5	-61	1,385	$-50,521$	$2,702,765$	$-199,360,981$	$19,391,512,145$

Then

$$
\frac{1}{1+\boldsymbol{U}^{h}}=\frac{\boldsymbol{U}^{-\frac{h}{2}}}{\boldsymbol{U}^{\frac{h}{2}}+\boldsymbol{U}^{-\frac{h}{2}}}=\frac{\boldsymbol{U}^{-\frac{1}{2}}}{e^{\frac{D}{2}}+e^{-\frac{D}{2}}}=\frac{1}{2} \boldsymbol{U}^{-\frac{h}{2}} \frac{1}{\cosh \frac{h D}{2}}=\frac{1}{2} \boldsymbol{U}^{-\frac{h}{2}} \sum_{k \geq 0} \frac{E_{k} h^{k}}{2^{k} k!} D^{k} .
$$

Hence

$$
\begin{equation*}
C \sum_{n \geq 0}(-1)^{n} P(x+n h)=\frac{1}{2} \sum_{k \geq 0} \frac{E_{k} h^{k}}{2^{k} k!} P^{(k)}\left(x-\frac{h}{2}\right) . \tag{2.4}
\end{equation*}
$$

When $P(x)=x^{m}, h=1$, we have

$$
\begin{equation*}
C \sum_{n \geq 0}(-1)^{n}(x+n)^{m}=\frac{1}{2} \sum_{k \geq 0}\binom{m}{k} \frac{E_{k}}{2^{k}}\left(x-\frac{1}{2}\right)^{m-k} . \tag{2.5}
\end{equation*}
$$

Setting $x=0$ and using the equality $E_{2 j+1}=0, \forall j$ we conclude that

$$
\begin{equation*}
C \sum_{n \geq 0}(-1)^{n} n^{m}=\frac{1}{2^{m+1}} \sum_{k \geq 0}(-1)^{m-k} E_{k}\binom{m}{k}=\frac{(-1)^{m}}{2^{m+1}} \sum_{k \geq 0} E_{2 k}\binom{m}{2 k} . \tag{2.6}
\end{equation*}
$$

Using (2.3) we deduce that when m is even, $m=2 m^{\prime}, m^{\prime}>0$ we have

$$
\begin{equation*}
C \sum_{n \geq 0}(-1)^{n} n^{2 m^{\prime}}=0 \tag{2.7}
\end{equation*}
$$

For example

$$
\begin{gather*}
1-1+1-1+\cdots \stackrel{C}{=} \frac{1}{2} \tag{0}\\
-1+2-3+4-\cdots \stackrel{C}{=}-\frac{1}{4}, \tag{1}\\
-1+2^{3}-3^{3}+4^{3}-\cdots \stackrel{C}{=} \frac{1}{8}, \tag{3}\\
-1^{5}+2^{5}-3^{5}+4^{5}-\cdots \stackrel{C}{=}-\frac{1}{4} . \tag{5}
\end{gather*}
$$

When $P(x)=\binom{x}{m}, x=0, h=1$ then it is more convenient to use (2.1) because

$$
\Delta\binom{x}{k}=\binom{x}{k-1}, \quad \forall k, x .
$$

We deduce

$$
\begin{equation*}
C \sum_{n \geq 0}(-1)^{n}\binom{n}{m}=\frac{1}{2} \sum_{k=1}^{m} \frac{(-1)^{k}}{2^{k}}\binom{0}{m-k}=\frac{(-1)^{m}}{2^{m+1}} \tag{2.8}
\end{equation*}
$$

Example 2.10. Consider the translation invariant operator

$$
\boldsymbol{T}: \mathbb{R}[x] \rightarrow \mathbb{R}[x], \quad P(x) \mapsto \int_{0}^{\infty} e^{-s} P(x+s) d x
$$

Set $\boldsymbol{R}=\boldsymbol{T}-1$. As explained in [1, II.3.B], the operators \boldsymbol{T} and \boldsymbol{R} are intimately related to the Laguerre polynomials. We have $\boldsymbol{R}=\boldsymbol{D}=\boldsymbol{T} D$ and 3

$$
\sigma_{\boldsymbol{T}}(t)=\frac{1}{1-t} \sigma_{\boldsymbol{R}}(t)=\frac{1}{1-t}-1=\frac{t}{1-t}
$$

If $P \in \mathbb{R}[x]$ is a polynomial of degree m then

$$
\begin{aligned}
& \boldsymbol{T}^{k} P(x)_{x=0}=\left(1+D+\cdots+D^{m}\right) P(x)_{x=0} \\
= & \int_{\mathbb{R}_{\geq 0}^{k}} e^{-\left(s_{1}+s_{2}+\cdots+s_{k}\right)} P\left(s_{1}+\cdots+s_{k}\right) d s_{1} \cdots d s_{k} .
\end{aligned}
$$

For $t \geq 0$ we denote by $\Delta_{k}(t)$ the $(k-1)$ simplex

$$
\Delta_{k-1}(t):=\left\{\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{R}_{\geq 0}^{k} ; s_{1}+\cdots+s_{k}=t\right\}
$$

and by $d V_{k-1}(t)$ the Euclidean volume element on $\Delta_{k-1}(t)$. Integrating along the fibers of the function $f: \mathbb{R}_{\geq 0}^{k} \rightarrow[0, \infty), f\left(s_{1}, \ldots, s_{k}\right)=s_{1}+\cdots+s_{k}$ we deduce

$$
\begin{aligned}
\int_{\mathbb{R}_{\geq 0}^{k}} e^{-\left(s_{1}+s_{2}+\cdots+s_{k}\right)} P\left(s_{1}+\cdots\right. & \left.+s_{k}\right) d s_{1} \cdots d s_{k}=\int_{0}^{\infty}\left(\int_{\Delta_{k-1}(t)} \frac{1}{|\nabla f|} d V_{k-1}(t)\right) e^{-t} P(t) d t \\
& =\frac{v_{k-1}}{\sqrt{k}} \int_{0}^{\infty} e^{-s} s^{k-1} P(s) d s
\end{aligned}
$$

where v_{k-1} is the $(k-1)$-dimensional volume of the $(k-1)$-simplex $\Delta_{k-1}=\Delta_{k-1}(t)_{t=1}$.
To compute the volume v_{k-1} we view Δ_{k} is a regular k-simplex with distinguished base Δ_{k}, and distinguished vertex $(0, \ldots, 0,1) \in \mathbb{R}^{k+1}$. The distance d_{k} from the vertex to the base is the distance from the vertex to the center of the base. We have

$$
d_{k}^{2}=1+\frac{1}{k}, \quad d_{k}=\sqrt{\frac{k+1}{k}}, \quad v_{k}=\frac{1}{k} d_{k} v_{k-1}=\left(\frac{k+1}{k^{3}}\right)^{1 / 2} v_{k-1}
$$

Since $v_{0}=1$ we deduce

$$
v_{k}=\frac{(k+1)^{1 / 2}}{k!}, \quad \boldsymbol{T}^{k} P(x)_{x=0}=\frac{1}{(k-1)!} \int_{0}^{\infty} e^{-s} s^{k-1} P(s) d s
$$

and

$$
\boldsymbol{R}^{k} P(x)_{x=0}=\frac{1}{(k-1)!} \int_{0}^{\infty} e^{-s} s^{k-1} P^{(k)}(s) d s
$$

[^2]Using Theorem 1.1 and Corollary 2.4 with the C-convenient series $f(t)=(1+t)^{-1}$ we deduce

$$
\begin{gathered}
\sum_{n \geq 0}(-1)^{n} \boldsymbol{T}^{n} P(x)_{x=0}={ }^{C} \sum_{n \geq 0}(-1)^{n} \frac{1}{(n-1)!} \int_{0}^{\infty} e^{-s} s^{n-1} P(s) d s \\
=\int_{0}^{\infty}\left(\sum_{k=0}^{\operatorname{deg} P} \frac{(-1)^{k}}{2^{k+1}(k-1)!} s^{k-1} P^{(k)}(s)\right) d s
\end{gathered}
$$

If we let $P(s)=s^{m}$ we deduce
$\int_{0}^{\infty} e^{-s} s^{n-1} P(s) d s=(m+n-1)!, \quad \int_{0}^{\infty} e^{-s} s^{k-1} P^{(k)}(s) d s=[m]_{k}(m-1)!=[m-1]_{k-1} m!$,
and

$$
\begin{equation*}
C \sum_{n \geq 0}(-1)^{n}\binom{m+n-1}{m}=\sum_{k=0}^{m} \frac{(-1)^{k}}{2^{k+1}}\binom{m-1}{k-1} \tag{2.9}
\end{equation*}
$$

Let us point out that (2.9) can be obtained from (2.8) using the shift-invariance of the Cesàro regularization method.

References

[1] M. Aigner, Combinatorial Theory, Springer Verlag, 1997.
[2] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
[3] G.H. Hardy, Divergent Series, Chelsea Publishing Co. 1991.
[4] N.E. Nörlund, Mémoire sur les polynomes de Bernoulli, Acta Math. 43(1922), 121-194.

[^0]: ${ }^{1}$ Hardy refers to such a notion of convergence as convergence in some 'Pickwickian' sense.

[^1]: ${ }^{2}$ This was apparently known and used by Euler.

[^2]: ${ }^{3}$ We can write formally $\boldsymbol{T}=\int_{0}^{\infty} e^{-s} \boldsymbol{U}^{s} d s=\int_{0}^{\infty} e^{-s(1-D)} d s=(1+D)^{-1}$, so that $\sigma_{\boldsymbol{T}}(t)=\frac{1}{1-t}$.

