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Abstract. We investigate the generalized convergence and sums of series of the
form

∑

n≥0 anT
nP (x), where P ∈ R[x], an ∈ R, ∀n ≥ 0, and T : R[x]→ R[x] is

a linear operator that commutes with the differentiation d
dx : R[x]→ R[x].
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1 The main result

We consider series of the form
∑

n≥0

anT
nP (x), (†)

where P ∈ R[x], and T : R[x]→ R[x] is a linear operator such that

TD = DT , (∗)

where D is the differentiation operator D = d
dx . The condition (∗) is equivalent with the

translation invariance of T , i.e.,

TU
h = U

h
T , ∀h ∈ R, (I)

where Uh : R[x]→ R[x] is the translation operator

R[x] ∋ p(x) 7→ p(x+ h) ∈ R[x].

For simplicity we set U := U
1. Clearly U

h ∈ O so a special case of the series (†) is the
series

∑

n≥0

anU
nhP (x) =

∑

n≥0

anP (x+ nh), h ∈ R, (‡h)

which is typically divergent.
We denote by O the R-algebra of translation invariant operators. We have a natural map

Q : R[[t]]→ O, R[[t] ∋
∑

n≥0

cn
tn

n!
7→
∑

n≥0

cn

n!
Dn.
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It is known (see [1, Prop. 3.47]) that this map is an isomorphism of rings. We denote by σ

the inverse of Q
σ : O→ R[[t]], O ∋ T 7→ σT ∈ R[[t]].

For T ∈ O we will refer to the formal power series σT as the symbol of the operator T .
More explicitely

σT (t) =
∑

n≥0

cn(T )

n!
tn, cn(T ) = (Txn)|x=0 ∈ R.

We denote by N the set of nonnegative integers, and by Seq the vector space of real se-
quences, i.e., maps a : N → R. Let Seqc the vector subspace of Seq consisting of all
convergent sequences.

A generalized notion of convergence1 or regularization method is a pair µ = (µ lim,Seqµ),
where

• Seqµ is a vector subspace of Seq containing Seqc and,

• µ lim is a linear map

µ lim : Seqµ → R, Seqµ ∋ a 7→ µ lim
n

a(n) ∈ R

such that for any a ∈ Seqc we have

µ lim a = lim
n→∞

a(n).

The sequences in Seqµ are called µ-convergent and µ lim is called the µ-limit. To any
sequence a ∈ Seq we associate the sequence S[a] of partial sums

S[a](n) = σn
k=0a(k). (1.1)

A series
∑

n≥0 a(n) is said to by µ-convergent if the sequence S[a] is µ-convergent. We set

µ
∑

n≥0

a(n) := µ lim
n

S[a](n).

We say that µ
∑

n≥0 a(n) is the µ-sum of the series. The regularization method is said to
be shift invariant if it satisfies the additional condition

µ
∑

n≥0

a(n) = a(0) + µ
∑

n≥1

a(n). (1.2)

We refer to the classic [3] for a large collection of regularization methods.
For x ∈ R and k ∈ N we set

[x]k :=

{

∏k−1
i=0 (x− i), k ≥ 1

1, k = 0,
,

(

x

k

)

:=
[x]k
k!

.

We can now state the main result of this paper.

1Hardy refers to such a notion of convergence as convergence in some ‘Pickwickian’ sense.
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Theorem 1.1. Let µ be a regularization method, T ∈ O and f(t) =
∑

n≥0 ant
n ∈ R[[t]].

Set c := c0(T ) = T 1. Suppose that f is µ-regular at t = c, i.e.,

for every k ∈ N the series
∑

n≥0 an[n]k c
n−k is µ-convergent. (µ)

We denote by f (k)(c)µ its µ-sum

f (k)(c)µ := µ
∑

n≥0

an[n]k c
n−k.

Then for every P ∈ R[x] the series
∑

n≥0 an(T
nP )(x) is µ-convergent and its µ-sum is

µ
∑

an(T
nP )(x) = f(T )µP (x),

where f(T )µ ∈ O is the operator

f(T )µ :=
∑

n≥0

f (k)(c)µ
k!

(T − c)k. (1.3)

Proof. Set R := T − c and let P ∈ R[x]. Then

R =
∑

n≥1

cn(T )

n!
Dn

so that
R

nP = 0, ∀n > degP. (1.4)

In particular this shows that f(T )µ is well defined. We have

anT
nP = an(c+R)nP = an

n
∑

k=0

(

n

k

)

cn−k
R

kP =

degP
∑

k=0

(

n

k

)

cn−k
R

kP.

At the last step we used (1.4) and the fact that
(

n

k

)

= 0, if k > n.

This shows that the formal series
∑

n≥0 an(T
nP )(x) can be written as a finite linear com-

bination of formal series

∑

n≥0

an(T
nP )(x) =

degP
∑

k=0

R
kP (x)

k!





∑

n≥0

an[n]k c
n−k



 .

From the linearity of the µ-summation operator we deduce

µ
∑

n≥0

an(T
nP )(x) =

degP
∑

k=0

R
kP (x)

k!





µ
∑

n≥0

an[n]k c
n−k
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=

(

degP
∑

k=0

f (k)(c)µ
k!

R
k

)

P (x) = f(T )µP (x)

�

2 Some applications

To describe some consequences of Theorem 1.1 we need to first describe some classical facts
about regularization methods.

For any sequence a ∈ Seq we denote by Ga(t) ∈ R[[t]] its generating series. We regard
the partial sum construction S in (1.1) as a linear operator S : Seq→ Seq. Observe that

GS[a](t) =
1

1− t
Ga(t).

We say that a regularization method µ1 = (µ1 lim,Seqµ1
) is stronger than the regularization

method µ0 = (µ1 lim,Seqµ0
), and we write this µ0 ≺ µ1, if

Seqµ0
⊂ Seqµ1

and µ1 lim
n

a(n) = µ0 lim
n

a(n), ∀a ∈ Seqµ0
.

The Abel regularization method2 A is defined as follows. We say that a sequence a is A

convergent if

• the radius of convergence of the series
∑

n≥0 ant
n is at least 1 and

• the function t 7→ (1− t)
∑

n≥0 ant
n has a finite limit as t→ 1−.

Hence
A lim a(n) = lim

t→1−
(1− t)

∑

n≥0

ant
n,

and SeqA consists of sequence for which the above limit exists and it is finite. Using (2) we
deduce that a series

∑

n≥0 a(n) is A-convergent if and only if the limit

lim
t→1−

∑

n≥0

ant
n

exists and it is finite. We have the following immediate result.

Proposition 2.1. Suppose that f(z) is a holomorphic function defined in an open neighbor-
hood of the set {1} ∪ {|z|} ⊂ C. If

∑

n≥0 anz
n is the Taylor series expansion of f at z = 0

then the corresponding formal power series [f ] =
∑

n≥0 ant
n is A-regular at t = 1,

[f ](k)(1)A = fk(1),

and the series

[f ](r)A =
∑

k

[f ](k)(1)A
k!

rk

coincides with the Taylor expansion of f at z = 1, and it converges to f(1 + r).

2This was apparently known and used by Euler.
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Corollary 2.2. Suppose that f(z) is a holomorphic function defined in an open neighborhood
of the set {1}∪{|z|} ⊂ C and

∑

n≥0 anz
n is the Taylor series expansion of f at z = 0. Then

for every T in O such that c0(T ) = 1, any P ∈ R[x], and any x ∈ R we have

A
∑

n

anT
nP (x) =

∑

k≥0

fk(1)

k!
(T − 1)kP (x). ⊓⊔

Let k ∈ N. A sequence a ∈ Seq is said to be Ck-convergent (or Cesàro convergent of
order k) if the limit

lim
n→∞

S
k[a](n)
(

n+k
k

)

exists and it is finite. We denote this limit by Ck lim a(n). A series
∑

n≥0 a(n) is said to be
Ck-convergent if the sequence of partial sums S[a] is Ck convergent. Thus the Ck-sum of
this series is

Ck

∑

n≥0

a(n) = lim
n→∞

S
k+1[a](n)
(

n+k
k

) .

More explicitly, we have (see [3, Eq.(5.4.5)])

Ck

∑

n≥0

a(n) = lim
n→∞

1
(

n+k
k

)

(

n
∑

ν=0

(

ν + k

k

)

a(n− ν)

)

Hence
Ck

∑

n≥0

a(n)⇐⇒S
k+1[a](n) ∼ A

(

n+ k

k

)

∼ A
nk

k!
,

where

a ∼ b⇐⇒ lim
n→∞

a(n)

b(n)
= 1,

if a(n), b(n) 6= 0, for n≫ 0.
The C0 convergence is equivalent with the classical convergence and it is known (see [3,

Thm. 43, 55]) that
Ck ≺ Ck′ ≺ A, ∀k < k′.

Given this fact, we define a sequence to be C-convergent (Cesàro convergent) if it is Ck-
convergent for some k ∈ N. Note that C ≺ A. Both the C and A methods are shift invariant,
i.e., they satisfy the condition (1.2).

We want to comment a bit about possible methods of establishing C-convergence. To
formulate a general strategy we need to introduce a classical notation. More precisely, if
f(t) =

∑

n≥0 ant
n is a formal power series we let [tn]f(t) denote the coefficient of tn in this

power series, i.e. [tn]f(t) = an.
Let f(t) =

∑

n≥0 ant
n. Then the series

∑

n≥0 ant
n C-converges to A if and only if there

exists a nonnegative real number α such that

[tn]
(

(1− t)−(α+1)f(t)
)

∼ A
nα

Γ(α+ 1)
,
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where Γ is Euler’s Gamma function. For a proof we refer to [3, Thm. 43].

Definition 2.3. We say that a power series f(t) =
∑

n≥0 ant
n is Cesàro convenient (or

C-convenient) at 1 if the following hold.

(i) The radius of convergences of the series is ≥ 1

(ii) The function f is regular at z = 1 and has finitely many singularities ζ1, . . . , ζν 6= 1
on the unit circle {|z| = 1} .

(iii) There exist ε > 0 and θ ∈ (0, π
2 ) such that f admits a continuation to the dimpled

disk

∆ε,θ :=

{

z ∈ C; |z| < 1 + ε, arg
( z

ζj
− 1

)

> θ, ∀j = 1, . . . , ν

}

.

(iv) For every singular point ζj there exists a positive integer mj such that

f(z) = O
(

(z − ζj)
−mj

)

as z → ζj , z ∈ ∆.

�

The results in [2, Chap. VI] implies that the collection RC of C-convenient power series
is a ring satisfying

f ∈ RC⇐⇒
df

dt
∈ RC .

Invoking [2, Thm VI.5] we deduce the following useful consequence.

Corollary 2.4. Let f ∈ R[[t]] be a power series C-convenient at 1. Then f is C-regular at
1 and

fk(1)C = f (k)(1)A = f (k)(1). ⊓⊔

Using [2, VII.7] we obtain the following useful result.

Corollary 2.5. (a) The power series

(1 + t)−m =
∑

n≥0

(

n+m− 1

n

)

(−t)n, m ≥ 1, log(1 + t) =
∑

n≥1

(−1)n+1 t
n

n

are C-regular at 1.
(b) If f(z) is an algebraic function defined on the unit disk |z| < 1 and regular at z = 1 then
the Taylor series of f at z = 0 is C-regular at 1.

Recall that the Cauchy product of two sequences a, b ∈ Seq is the sequence a ∗ b,

a ∗ b(n) =
n

∑

i=0

a(n− i)b(i), ∀n ∈ N.
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A regularization method is said to be multiplicative if

µ
∑

n

a ∗ b(n) =
(

µ
∑

n

a(n)

)(

µ
∑

n

b(n)

)

,

for any µ-convergent series
∑

n≥0 a(n) and
∑

n≥0 b(n). The results of [3, Chap.X] show that
the C and A methods are multiplicative.

For any regularization method µ and c ∈ R we denote by R[[t]]µ the set of series that
are µ-regular at t = 1.

Proposition 2.6. Let µ be a multiplicative regularization method. Then R[[t]]µ is a com-
mutative ring with one and we have the product rule

(f · g)(n)(1)µ =
n
∑

k=0

(

n

k

)

f (k)(1)µ · g(n−k)(1)µ.

Moreover, if T ∈ O is such that c0(T ) = 1 then the map

R[[t]]µ ∋ f 7→ f(T )µ ∈ O

is a ring morphism.

Proof. The product formula follows from the iterated application of the equalities

Dt(fg) = (Dtf)g + f(Dtg), (fg)(1)µ = f(1)µ · g(1)µ, f ′(1)µ = (Dtf)(1)µ,

where Dt : R[[t]]→ R[[t]] is the formal differentiation operator d
dt . The last statement is an

immediate application of the above product rule. �

Remark 2.7. The inclusion R[[t]]C ⊂ R[[t]]A is strict. For example, the power series

f(z) = e1/(1+z)

satisfies the assumption of Proposition 2.1 so that the associated formal power series [f ] is
A-regular at 1. On the other hand, the arguments in [3, §5.12] show that [f ] is not C-regular
at 1. �

Consider the translation operator Uh ∈ O. From Taylor’s formula

p(x+ h) =
∑

n≥0

hn

n!
Dnp(x)

we deduce that

σUh(t) = eth.

Set ∆h := U
h − 1. Using Corollary 2.5 and Theorem 1.1 we deduce the following result.
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Corollary 2.8. For any P ∈ R[x] we have

C
∑

n≥0

(−1)nP (x+ nh) =
1

2





∑

n≥0

(−1)n
2n

∆n
h



P (x). (2.1)

Observe that
(

1 +
1

2
∆h

)





∑

n≥0

(−1)n
2n

∆n
h



 = 1

so that 1
2

∑

n≥0
(−1)n

2n ∆n
h is the inverse of the operator 2 + ∆h. We thus have

C
∑

n≥0

(−1)nP (x+ nh) = (2 + ∆h)
−1P (x) = (1 +U

h)−1P (x). (2.2)

Remark 2.9. Here is a heuristic explanation of the equality (2.2) assuming the Cesàro
convergence of the series

∑

n≥0(−1)nP (x + nh). Denote by S(x) the Cesàro sum of this
series. Then

S(x+ h) = C
∑

n≥0

(−1)nP
(

x+ (n+ 1)h
)

(1.2)
= −C

∑

n≥0

(−1)nP (x+ h) + P (x) = −S(x) + P (x).

Hence

S(x+ h) + S(x) = P (x), ∀x ∈ R.

If we knew that S(x) is a polynomial we would then deduce

S(x) = (1 +U
h)−1P (x). ⊓⊔

The inverse of 1+U
h can be explicitly expressed using Euler numbers and polynomials,

[4, Eq. (14), p.134]. The Euler numbers Ek are defined by the Taylor expansion

1

cosh t
=

2

et + e−t
=

∑

k≥0

Ek

k!
tk.

Since cosh t is an even function we deduce that Ek = 0 for odd k. They satisfy the recurrence
relation

En +

(

n

2

)

En−2 +

(

n

4

)

En−4 + · · · = 0, n ≥ 2. (2.3)

Here are the first few Euler numbers.

n 0 2 4 6 8 10 12 14 16
En 1 –1 5 –61 1,385 –50,521 2,702,765 -199,360,981 19,391,512,145
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Then

1

1 +U
h
=

U
−h

2

U
h
2 +U

−h
2

=
U
− 1

2

e
D
2 + e−

D
2

=
1

2
U
−h

2

1

cosh hD
2

=
1

2
U
−h

2

∑

k≥0

Ekh
k

2kk!
Dk.

Hence

C
∑

n≥0

(−1)nP (x+ nh) =
1

2

∑

k≥0

Ekh
k

2kk!
P (k)

(

x− h

2

)

. (2.4)

When P (x) = xm, h = 1, we have

C
∑

n≥0

(−1)n(x+ n)m =
1

2

∑

k≥0

(

m

k

)

Ek

2k

(

x− 1

2

)m−k

. (2.5)

Setting x = 0 and using the equality E2j+1 = 0, ∀j we conclude that

C
∑

n≥0

(−1)nnm =
1

2m+1

∑

k≥0

(−1)m−kEk

(

m

k

)

=
(−1)m
2m+1

∑

k≥0

E2k

(

m

2k

)

. (2.6)

Using (2.3) we deduce that when m is even, m = 2m′, m′ > 0 we have

C
∑

n≥0

(−1)nn2m′ = 0. (2.7)

For example

1− 1 + 1− 1 + · · · C
=
1

2
, (†0)

−1 + 2− 3 + 4− · · · C
= −1

4
, (†1)

−1 + 23 − 33 + 43 − · · · C
=
1

8
, (†3)

−15 + 25 − 35 + 45 − · · · C
= −1

4
. (†5)

When P (x) =
(

x
m

)

, x = 0, h = 1 then it is more convenient to use (2.1) because

∆

(

x

k

)

=

(

x

k − 1

)

, ∀k, x.

We deduce

C
∑

n≥0

(−1)n
(

n

m

)

=
1

2

m
∑

k=1

(−1)k
2k

(

0

m− k

)

=
(−1)m
2m+1

. (2.8)
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Example 2.10. Consider the translation invariant operator

T : R[x]→ R[x], P (x) 7→
∫ ∞

0

e−sP (x+ s)dx.

Set R = T − 1. As explained in [1, II.3.B], the operators T and R are intimately related to
the Laguerre polynomials. We have R = DT = TD and3

σT (t) =
1

1− t
σR(t) =

1

1− t
− 1 =

t

1− t
.

If P ∈ R[x] is a polynomial of degree m then

T
kP (x)x=0 = (1 +D + · · ·+Dm)P (x)x=0

=

∫

R
k
≥0

e−(s1+s2+···+sk)P (s1 + · · ·+ sk)ds1 · · · dsk.

For t ≥ 0 we denote by ∆k(t) the (k − 1) simplex

∆k−1(t) :=
{

(s1, . . . , sk) ∈ R
k
≥0; s1 + · · ·+ sk = t

}

.,

and by dVk−1(t) the Euclidean volume element on ∆k−1(t). Integrating along the fibers of
the function f : Rk

≥0 → [0,∞), f(s1, . . . , sk) = s1 + · · ·+ sk we deduce

∫

R
k
≥0

e−(s1+s2+···+sk)P (s1 + · · ·+ sk)ds1 · · · dsk =
∫ ∞

0

(

∫

∆k−1(t)

1

|∇f |dVk−1(t)

)

e−tP (t)dt

=
vk−1√

k

∫ ∞

0

e−ssk−1P (s)ds,

where vk−1 is the (k − 1)-dimensional volume of the (k − 1)-simplex ∆k−1 = ∆k−1(t)t=1.
To compute the volume vk−1 we view ∆k is a regular k-simplex with distinguished base

∆k, and distinguished vertex (0, . . . , 0, 1) ∈ R
k+1. The distance dk from the vertex to the

base is the distance from the vertex to the center of the base. We have

d2k = 1 +
1

k
, dk =

√

k + 1

k
, vk =

1

k
dkvk−1 =

(

k + 1

k3

)1/2

vk−1.

Since v0 = 1 we deduce

vk =
(k + 1)1/2

k!
, T

kP (x)x=0 =
1

(k − 1)!

∫ ∞

0

e−ssk−1P (s)ds,

and

R
kP (x)x=0 =

1

(k − 1)!

∫ ∞

0

e−ssk−1P (k)(s)ds.

3We can write formally T =
∫
∞

0 e
−s

U
s
ds =

∫
∞

0 e
−s(1−D)

ds = (1 +D)−1, so that σT (t) = 1
1−t

.
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Using Theorem 1.1 and Corollary 2.4 with the C-convenient series f(t) = (1+t)−1 we deduce

C
∑

n≥0

(−1)nT nP (x)x=0 =
C
∑

n≥0

(−1)n 1

(n− 1)!

∫ ∞

0

e−ssn−1P (s)ds

=

∫ ∞

0

(

degP
∑

k=0

(−1)k
2k+1(k − 1)!

sk−1P (k)(s)

)

ds.

If we let P (s) = sm we deduce

∫ ∞

0

e−ssn−1P (s)ds = (m+n− 1)!,
∫ ∞

0

e−ssk−1P (k)(s)ds = [m]k(m− 1)! = [m− 1]k−1m!,

and

C
∑

n≥0

(−1)n
(

m+ n− 1

m

)

=

m
∑

k=0

(−1)k
2k+1

(

m− 1

k − 1

)

. (2.9)

Let us point out that (2.9) can be obtained from (2.8) using the shift-invariance of the
Cesàro regularization method. �
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[4] N.E. Nörlund, Mémoire sur les polynomes de Bernoulli, Acta Math. 43(1922), 121-194.


