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1 The main result

‘We consider series of the form

> 0, T P(a), )

n>0

where P € R[z], and T : R[z] — R[] is a linear operator such that

TD = DT, (%)

where D is the differentiation operator D = %. The condition (x) is equivalent with the

translation invariance of T, i.e.,
TU" =U"T, VheR, (I)
where U” : R[z] — R[z] is the translation operator
Rlz] 2 p(z) = p(z + h) € Rz].

For simplicity we set U := U'. Clearly U" € O so a special case of the series (f) is the

series
ZanU"hP Zan x+nh), heR, (tn)
n>0 n>0

which is typically divergent.
We denote by O the R-algebra of translation invariant operators. We have a natural map

Q:R[[t] — O, R[]t ch Z

n>0 ! n>0
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It is known (see [1, Prop. 3.47]) that this map is an isomorphism of rings. We denote by o
the inverse of Q
o:0—=R[t], 05T or € R[[t]].

For T € O we will refer to the formal power series o as the symbol of the operator T'.
More explicitely

or(t) =Y () pn. en(T) = (T2")| =0 € R.

n!
n>0

We denote by N the set of nonnegative integers, and by Seq the vector space of real se-
quences, i.e., maps a : N — R. Let Seq® the vector subspace of Seq consisting of all
convergent sequences.

A generalized notion of convergence
where

Lor regularization method is a pair p = (¥ lim, Seq,,),
e Seq,, is a vector subspace of Seq containing Seq‘ and,
e "lim is a linear map

“lim : Seq,, — R, Seq, > a~ "lima(n) € R

such that for any a € Seq® we have

Hlima = lim a(n).
n—oo

The sequences in Seq,, are called p-convergent and " lim is called the p-limit. To any
sequence a € Seq we associate the sequence S|a] of partial sums

Slal(n) = og—oa(k)- (1.1)
A series ), - a(n) is said to by p-convergent if the sequence S[a| is p-convergent. We set
“> " a(n) = *1lim S[a](n).
n>0

We say that # 3" _a(n) is the p-sum of the series. The regularization method is said to
be shift invariant if it satisfies the additional condition

" Z a(n) = a(0) +*# Z a(n). (1.2)

We refer to the classic [3] for a large collection of regularization methods.
For x € R and k € N we set

— Hf;l(x—i), k>1 (x\  [2]
) = {17 0 o ()=

We can now state the main result of this paper.

1Hardy refers to such a notion of convergence as convergence in some ‘Pickwickian’ sense.
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Theorem 1.1. Let p be a regularization method, T € O and f(t) = >, <qant™ € R[[t]].
Set ¢ := ¢o(T) = T1. Suppose that f is p-regular at t = ¢, i.e., B

n—=k

for every k € N the series ), - an[n]y c is p-convergent. (1)

We denote by f*)(c), its p-sum

f(k) () = * Z an[ni ok

n>0

Then for every P € Rlz] the series 3, - an(T" P)(x) is p-convergent and its pu-sum is

"> an(T"P)(x) = f(T),P(x),

where f(T), € O is the operator

*) (¢
Fy =3 T o (13)

Proof. Set R:=T — c and let P € R[z]. Then
en(T)
R= ——=D"
nz>:1 n!

so that
R"P =0, Vn > degP. (1.4)

In particular this shows that f(T'), is well defined. We have

n deg P
0, T"P = a,(c+ R"P=a, (Z) FREP = ) <Z) R RFP,
k=0 k=0

At the last step we used (1.4) and the fact that

(Z):o, if &> n.

This shows that the formal series Y ., a,(T"P)(x) can be written as a finite linear com-
bination of formal series -

deg P L -
;)an(:rnp)(x) = ;O R ]]:!( ) goan[n]kc”*k

From the linearity of the p-summation operator we deduce

deg P

k
*Y e P = S0 T (S e

n>0 k=0 n>0
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deg P (k) c
- (Z f”R) P(@) = H(T),P (2)

k!
k=0

2 Some applications

To describe some consequences of Theorem 1.1 we need to first describe some classical facts
about regularization methods.

For any sequence a € Seq we denote by G, (t) € R][t]] its generating series. We regard
the partial sum construction S in (1.1) as a linear operator S : Seq — Seq. Observe that

1
GS[a] (t) =71 3 Ga(t)'
1—t

We say that a regularization method ; = (#* lim, Seq,,, ) is stronger than the regularization
method po = (*1 lim, Seq,, ), and we write this po < 1, if

Seq,,, C Seq,,, and " lirrln a(n) = Ho 1i7rln a(n), Va € Seq,,, .
The Abel reqularization method? A is defined as follows. We say that a sequence a is A
convergent if

e the radius of convergence of the series ) - ant™ is at least 1 and

e the function t — (1 —1¢) > -, ant™ has a finite limit as ¢ — 17.

Hence
Alima(n) = lim (1 —1t) Zant",

t—1—
n>0

and Seq, consists of sequence for which the above limit exists and it is finite. Using (2) we
deduce that a series ), . a(n) is A-convergent if and only if the limit

exists and it is finite. We have the following immediate result.
Proposition 2.1. Suppose that f(z) is a holomorphic function defined in an open neighbor-
hood of the set {1} U {[z[} C C. If >, 5qanz" is the Taylor series expansion of f at z =0
then the corresponding formal power series [f] =), 5 ant™ is A-regular at t =1,

(1M (1) 4 = 5 (1),
and the series

(k)
7)) a = 30 W
k

coincides with the Taylor expansion of f at z =1, and it converges to f(1+ 7).

2This was apparently known and used by Euler.
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Corollary 2.2. Suppose that f(z) is a holomorphic function defined in an open neighborhood
of the set {1}U{|z|} C C and ), -, anz™ is the Taylor series expansion of f at z = 0. Then
for every T in O such that co(T) =1, any P € R[z], and any x € R we have

k
AN 4P =3 L k(ll) (T = 1)*P(a). o

£E>0

Let k € N. A sequence a € Seq is said to be Cj-convergent (or Cesaro convergent of
order k) if the limit

S"[al(n)
lim ————=
n— oo n+k
“ ()
exists and it is finite. We denote this limit by “* lima(n). A series > nsoa(n) is said to be

C-convergent if the sequence of partial sums S[a] is Cj convergent. Thus the Cj-sum of
this series is it
S al(n
C’“Za(n) = lim 7[ I( )

n>0 nee (”+k)

k
More explicitly, we have (see [3, Eq.(5.4.5)])

C Za(n) Znh_{réo@(i: (ljzk)a(n—”)>

n>0 v=0
Hence .
k
" a(n) = 8" [a](n) ~ A<”j€r ) ~ A%,
n>0 '
where
a ~ b<= lim a(n) =1,
n—o0 b(n)

if a(n),b(n) # 0, for n > 0.
The Cj convergence is equivalent with the classical convergence and it is known (see [3,
Thm. 43, 55]) that
CrL < Cp < A, vk < K.

Given this fact, we define a sequence to be C-convergent (Cesaro convergent) if it is Cy-
convergent for some k € N. Note that C' < A. Both the C' and A methods are shift invariant,
i.e., they satisfy the condition (1.2).

We want to comment a bit about possible methods of establishing C-convergence. To
formulate a general strategy we need to introduce a classical notation. More precisely, if
f(t) =>,>0ant™ is a formal power series we let [t"]f(t) denote the coefficient of t™ in this
power series, i.e. [t"]f(t) = ay.

Let f(t) =3_, 50 ant™. Then the series 3 - ant™ C-converges to A if and only if there
exists a nonnegative real number a such that

1] (L= 07050 ) ~ Ay

(o3
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where T is Euler’'s Gamma function. For a proof we refer to [3, Thm. 43].

Definition 2.3. We say that a power series f(t) = > -, ant™ is Cesaro convenient (or
C-convenient) at 1 if the following hold. B

(i) The radius of convergences of the series is > 1

(ii) The function f is regular at z = 1 and has finitely many singularities (7,...,(, # 1
on the unit circle {|z| =1} .

(iii) There exist ¢ > 0 and 6 € (0, %) such that f admits a continuation to the dimpled
disk

As’gi{ZGC; 2] <1+e¢, arg(§71)>0, le,...,z/}.

J
(iv) For every singular point ¢; there exists a positive integer m; such that

f(z)=0((z=¢)™™) as z = (j, 2 € A

O

The results in [2, Chap. VI] implies that the collection R¢ of C-convenient power series
is a ring satisfying
df

R — € Re.
fG c<:>dt€ C

Invoking [2, Thm VI.5] we deduce the following useful consequence.

Corollary 2.4. Let f € R][t]] be a power series C-convenient at 1. Then f is C-reqular at
1 and

FW)e =P 1)a=fP(). O

Using [2, VIL.7] we obtain the following useful result.
Corollary 2.5. (a) The power series
n+m-—1 "
14t)™™ = < >—t”,m21, log(l+1) =3 (1"
o= (") o1+ = -0

are C'-reqular at 1.
(b) If f(2) is an algebraic function defined on the unit disk |z| < 1 and reqular at z =1 then
the Taylor series of f at z =0 is C-regular at 1.

Recall that the Cauchy product of two sequences a,b € Seq is the sequence a * b,

ax*xb(n)= Za(n —)b(i), VneN.

n
=0
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A regularization method is said to be multiplicative if

uZa*b(n) = (HZa(n)> <”Zb(n)> ,

for any p-convergent series Y - a(n) and Y, -, b(n). The results of [3, Chap.X] show that
the C' and A methods are multiplicative. a

For any regularization method p and ¢ € R we denote by R][t]], the set of series that
are p-regular at t = 1.

Proposition 2.6. Let u be a multiplicative regularization method. Then R[[t]],, is a com-
mutative ring with one and we have the product rule

70 =3 (1) W, g0,
k=0
Moreover, if T € O is such that co(T) = 1 then the map
R[[t]]u S>f— f(T);t €0

s a ring morphism.

Proof. The product formula follows from the iterated application of the equalities

Di(fg) = (Def)g+ f(Drg), (f9)(V)p = f(V)u-9(V)p, [ = (Def) (1),

where D, : R[[t]] = R][[t]] is the formal differentiation operator %. The last statement is an
immediate application of the above product rule. O

Remark 2.7. The inclusion R[[t]]c C R[[t]]4 is strict. For example, the power series
f(z) =et/0H2)

satisfies the assumption of Proposition 2.1 so that the associated formal power series [f] is
A-regular at 1. On the other hand, the arguments in [3, §5.12] show that [f] is not C-regular
at 1. O

Consider the translation operator U" € 0. From Taylor’s formula
h
pa+h) =3 LoD ()
n>0

we deduce that

oy (t) = e

Set Ay, :=U" —1. Using Corollary 2.5 and Theorem 1.1 we deduce the following result.
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Corollary 2.8. For any P € Rlz] we have

> (~1)"P(x + nh) = ; Z(;)" n| P(x). (2.1)

n>0 n>0

Observe that

(1+;Ah) Z(zn) Al =1

n>0

so that 3 5 (;L)n A} is the inverse of the operator 2 + Aj. We thus have

N (=1)"P(z+nh) = 2+ Ap) ' P(z) = 1+ U") ' P(a). (2.2)

n>0

Remark 2.9. Here is a heuristic explanation of the equality (2.2) assuming the Cesaro
convergence of the series > - (—1)"P(x + nh). Denote by S(z) the Cesaro sum of this
series. Then B

S(xz+h) = Z (z+ (n+1)h)
n>0

02 _ N (“1)"Pla+ h) + P(x) = —S(x) + P(x).

n>0

Hence
S(z+h)+ S(z) = P(x), Yz € R.

If we knew that S(x) is a polynomial we would then deduce
S(z) = (1 +U")""P(a). O

The inverse of 1+ U" can be explicitly expressed using Euler numbers and polynomials,
[4, Eq. (14), p.134]. The Euler numbers F}, are defined by the Taylor expansion

1 2 E
cosht et +et Z k!
k>0

Since cosh t is an even function we deduce that Ejx = 0 for odd k. They satisfy the recurrence
relation

Here are the first few Euler numbers.

3

o
[N
e

6 8 10 12 14 16
61 | 1,385 | 50,521 | 2,702,765 | 199,360,081 | 19,391,512,145

&=
3
—_
|
—_
ot
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Then
R i * A R S U | _%ZEkthk
1+U" UsivU% e% e 3 2 cosh%_Q = 2k
Hence
N 1 ELh* h
N (-=1)"P(z +nh) = 52 ST P (x— 2) . (2.4)

n>0 k>0
When P(z) =z™, h =1, we have
1 m\ Ej 1\ "
c _
Z(—l)”(m+n)m—2z<k>2k(x—2> . (2.5)
n>0 k>0
Setting = 0 and using the equality Ea;41 = 0, Vj we conclude that
N~ = L S yrre () = e S Eul) (2.6)
T om+1 k k)~ gmtl 2k ok ) .
n>0 k>0 k>0

Using (2.3) we deduce that when m is even, m = 2m/, m’ > 0 we have

N (=nmetm =0 (2.7)
n>0
For example
1
1-1+1-14.-- 22, (o)
o 1
“l42-344— = (t1)

o

142333443 ...

o
\

| —
—
—
ot

S~—

—1° 425 - 3% 445 ...

When P(z) = (%), =0, h =1 then it is more convenient to use (2.1) because

We deduce




146 LIVIU I. NICOLAESCU

Example 2.10. Consider the translation invariant operator
T :R[z] = R[z], P(x)— / P(z + s)dz.
Set R =T — 1. As explained in [1, I1.3.B], the operators T and R are intimately related to

the Laguerre polynomials. We have R = DT = T'D and?

1 1 t
— op)= — — 1= ——.
17t0R(> 11—t 11—t

O'T(t> ==
If P € R[] is a polynomial of degree m then

T"P(z),—0 = (1+ D+ -+ + D™)P(x)s=0
= / e~(itsztts) plg) 4. 4 5p)dsy - - dsy.
RE

For t > 0 we denote by Ag(t) the (k — 1) simplex
Akl —{81,...7 €R>0, 81+-~-+Sk:t}.7

and by dVj_1(t) the Euclidean volume element on Ay_1(¢). Integrating along the fibers of
the function f : Rgo —[0,00), f(s1,-..,8k) =81+ -+ s we deduce

/ e—(81+82+'~~+8k)P(81 4+ .4 Sk)dsl . dsk — / / de 1( ) e_tP(t)dt
RY, 0 Ap_1(t) |Vf|

Vk—1 > —s k—1
= e °s" T P(s)ds,
VK (¢)

where v is the (k — 1)-dimensional volume of the (k — 1)-simplex Ag_1 = Ag_1(t)=1.

To compute the volume vg_1 we view Ay is a regular k-simplex with distinguished base
Ay, and distinguished vertex (0,...,0,1) € R**!. The distance dj from the vertex to the
base is the distance from the vertex to the center of the base. We have

1 [k+1 1 k1)
di:1+g7 dk: T, Uk:Edk’Uk_lz (ki’)) Vi—1-

Since vy = 1 we deduce

1)1/2 1 >
%, TFP () = W/ e *s" 1P (s)ds,
. - . 0

Vi =

and ) -
RFP(2),—o = m/o e " 1P (5)ds.

3We can write formally T = [° e *U®ds = [;° e 51 ~D)ds = (14 D)7, so that op(t) = 1.
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Using Theorem 1.1 and Corollary 2.4 with the C-convenient series f(t) = (1+t)~! we deduce

CZ nTn CZ n_l /Ooefssnflp(s)ds

n>0 n>0
oo [degP k
(-1) k=1 p(k
:/ (Z 72]”1(]{_1)'3 Pl )(8) ds.
0 k=0 ’

If we let P(s) = s™ we deduce

/00 e *s" tP(s)ds = (m+n—1), /OO e 25" PR) (8)ds = [m]p(m—1)! = [m—1]_1m!,
0 0

and

¢ Y (1) <m+n—1):§:2 ( 1>. (2.9)

n>0 =0

Let us point out that (2.9) can be obtained from (2.8) using the shift-invariance of the
Cesaro regularization method. O
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