Regularization of Certain Divergent Series of Polynomials

Liviu I. NICOLAESCU

Abstract. We investigate the generalized convergence and sums of series of the form $\sum_{n\geq 0} a_n T^n P(x)$, where $P\in \mathbb{R}[x]$, $a_n\in \mathbb{R}$, $\forall n\geq 0$, and $T:\mathbb{R}[x]\to \mathbb{R}[x]$ is a linear operator that commutes with the differentiation $\frac{d}{dx}:\mathbb{R}[x]\to \mathbb{R}[x]$.

Keywords: translation invariant operators, divergent series, summability.

Mathematics Subject Classification (2000): 05A10, 05A19, 11B83, 40A30, 40G05, 40G10.

1 The main result

We consider series of the form

$$\sum_{n\geq 0} a_n \mathbf{T}^n P(x),\tag{\dagger}$$

where $P \in \mathbb{R}[x]$, and $T : \mathbb{R}[x] \to \mathbb{R}[x]$ is a linear operator such that

$$TD = DT, (*)$$

where D is the differentiation operator $D = \frac{d}{dx}$. The condition (*) is equivalent with the translation invariance of T, i.e.,

$$TU^h = U^h T, \ \forall h \in \mathbb{R},$$
 (I)

where $U^h: \mathbb{R}[x] \to \mathbb{R}[x]$ is the translation operator

$$\mathbb{R}[x] \ni p(x) \mapsto p(x+h) \in \mathbb{R}[x].$$

For simplicity we set $U:=U^1$. Clearly $U^h\in \mathfrak{O}$ so a special case of the series (\dagger) is the series

$$\sum_{n\geq 0} a_n U^{nh} P(x) = \sum_{n\geq 0} a_n P(x+nh), \quad h \in \mathbb{R},$$
 (\ddagger_h)

which is typically divergent.

We denote by O the \mathbb{R} -algebra of translation invariant operators. We have a natural map

$$Q: \mathbb{R}[[t]] \to \mathcal{O}, \quad \mathbb{R}[[t] \ni \sum_{n \ge 0} c_n \frac{t^n}{n!} \mapsto \sum_{n \ge 0} \frac{c_n}{n!} D^n.$$

It is known (see [1, Prop. 3.47]) that this map is an isomorphism of rings. We denote by σ the inverse of Ω

$$\sigma: \mathcal{O} \to \mathbb{R}[[t]], \ \mathcal{O} \ni T \mapsto \sigma_T \in \mathbb{R}[[t]].$$

For $T \in \mathcal{O}$ we will refer to the formal power series σ_T as the *symbol* of the operator T. More explicitly

$$\sigma_{\mathbf{T}}(t) = \sum_{n>0} \frac{c_n(\mathbf{T})}{n!} t^n, \ c_n(\mathbf{T}) = (\mathbf{T}x^n)|_{x=0} \in \mathbb{R}.$$

We denote by \mathbb{N} the set of nonnegative integers, and by **Seq** the vector space of real sequences, i.e., maps $a: \mathbb{N} \to \mathbb{R}$. Let **Seq**^c the vector subspace of **Seq** consisting of all convergent sequences.

A generalized notion of convergence¹ or regularization method is a pair $\mu = (\mu \lim, \mathbf{Seq}_{\mu})$, where

- \mathbf{Seq}_{μ} is a vector subspace of \mathbf{Seq} containing \mathbf{Seq}^c and,
- μ lim is a linear map

$$^{\mu}\lim:\mathbf{Seq}_{\mu}\to\mathbb{R},\ \mathbf{Seq}_{\mu}\ni a\mapsto ^{\mu}\lim_{n}a(n)\in\mathbb{R}$$

such that for any $a \in \mathbf{Seq}^c$ we have

$$^{\mu}$$
 $\lim a = \lim_{n \to \infty} a(n).$

The sequences in \mathbf{Seq}_{μ} are called μ -convergent and μ lim is called the μ -limit. To any sequence $a \in \mathbf{Seq}$ we associate the sequence S[a] of partial sums

$$S[a](n) = \sigma_{k-0}^n a(k). \tag{1.1}$$

A series $\sum_{n\geq 0} a(n)$ is said to by μ -convergent if the sequence S[a] is μ -convergent. We set

$$^{\mu}\sum_{n>0}a(n):={}^{\mu}\lim_{n}\mathbf{S}[a](n).$$

We say that $^{\mu}\sum_{n\geq 0} a(n)$ is the μ -sum of the series. The regularization method is said to be shift invariant if it satisfies the additional condition

$${}^{\mu}\sum_{n\geq 0}a(n) = a(0) + {}^{\mu}\sum_{n\geq 1}a(n). \tag{1.2}$$

We refer to the classic [3] for a large collection of regularization methods.

For $x \in \mathbb{R}$ and $k \in \mathbb{N}$ we set

$$[x]_k := \begin{cases} \prod_{i=0}^{k-1} (x-i), & k \ge 1 \\ 1, & k = 0, \end{cases}, \begin{pmatrix} x \\ k \end{pmatrix} := \frac{[x]_k}{k!}.$$

We can now state the main result of this paper.

¹Hardy refers to such a notion of convergence as convergence in some 'Pickwickian' sense.

Theorem 1.1. Let μ be a regularization method, $T \in \mathcal{O}$ and $f(t) = \sum_{n \geq 0} a_n t^n \in \mathbb{R}[[t]]$. Set $c := c_0(T) = T1$. Suppose that f is μ -regular at t = c, i.e.,

for every
$$k \in \mathbb{N}$$
 the series $\sum_{n\geq 0} a_n[n]_k c^{n-k}$ is μ -convergent. (μ)

We denote by $f^{(k)}(c)_{\mu}$ its μ -sum

$$f^{(k)}(c)_{\mu} := {}^{\mu} \sum_{n>0} a_n[n]_k c^{n-k}.$$

Then for every $P \in \mathbb{R}[x]$ the series $\sum_{n\geq 0} a_n(T^n P)(x)$ is μ -convergent and its μ -sum is

$$^{\mu} \sum a_n(\mathbf{T}^n P)(x) = f(\mathbf{T})_{\mu} P(x),$$

where $f(\mathbf{T})_{\mu} \in \mathcal{O}$ is the operator

$$f(T)_{\mu} := \sum_{n>0} \frac{f^{(k)}(c)_{\mu}}{k!} (T-c)^{k}.$$
 (1.3)

Proof. Set R := T - c and let $P \in \mathbb{R}[x]$. Then

$$R = \sum_{n>1} \frac{c_n(T)}{n!} D^n$$

so that

$$\mathbf{R}^n P = 0, \ \forall n > \deg P. \tag{1.4}$$

In particular this shows that $f(T)_{\mu}$ is well defined. We have

$$a_n \mathbf{T}^n P = a_n (c + \mathbf{R})^n P = a_n \sum_{k=0}^n \binom{n}{k} c^{n-k} \mathbf{R}^k P = \sum_{k=0}^{\deg P} \binom{n}{k} c^{n-k} \mathbf{R}^k P.$$

At the last step we used (1.4) and the fact that

$$\binom{n}{k} = 0, \text{ if } k > n.$$

This shows that the formal series $\sum_{n\geq 0} a_n(\mathbf{T}^n P)(x)$ can be written as a *finite* linear combination of formal series

$$\sum_{n\geq 0} a_n(\mathbf{T}^n P)(x) = \sum_{k=0}^{\deg P} \frac{\mathbf{R}^k P(x)}{k!} \left(\sum_{n\geq 0} a_n[n]_k c^{n-k} \right).$$

From the linearity of the μ -summation operator we deduce

$${}^{\mu} \sum_{n \ge 0} a_n(\mathbf{T}^n P)(x) = \sum_{k=0}^{\deg P} \frac{\mathbf{R}^k P(x)}{k!} \left({}^{\mu} \sum_{n \ge 0} a_n[n]_k c^{n-k} \right)$$

$$= \left(\sum_{k=0}^{\deg P} \frac{f^{(k)}(c)_{\mu}}{k!} \mathbf{R}^{k}\right) P(x) = f(\mathbf{T})_{\mu} P(x)$$

2 Some applications

To describe some consequences of Theorem 1.1 we need to first describe some classical facts about regularization methods.

For any sequence $a \in \mathbf{Seq}$ we denote by $G_a(t) \in \mathbb{R}[[t]]$ its generating series. We regard the partial sum construction S in (1.1) as a linear operator $S : \mathbf{Seq} \to \mathbf{Seq}$. Observe that

$$G_{S[a]}(t) = \frac{1}{1-t}G_a(t).$$

We say that a regularization method $\mu_1 = (^{\mu_1} \lim, \mathbf{Seq}_{\mu_1})$ is stronger than the regularization method $\mu_0 = (^{\mu_1} \lim, \mathbf{Seq}_{\mu_0})$, and we write this $\mu_0 \prec \mu_1$, if

$$\mathbf{Seq}_{\mu_0} \subset \mathbf{Seq}_{\mu_1} \ \text{ and } \ ^{\mu_1} \lim_n a(n) = ^{\mu_0} \lim_n a(n), \ \forall a \in \mathbf{Seq}_{\mu_0} \, .$$

The Abel regularization method² A is defined as follows. We say that a sequence a is A convergent if

- the radius of convergence of the series $\sum_{n>0} a_n t^n$ is at least 1 and
- the function $t \mapsto (1-t) \sum_{n\geq 0} a_n t^n$ has a finite limit as $t \to 1^-$.

Hence

$$^{A} \lim a(n) = \lim_{t \to 1^{-}} (1 - t) \sum_{n > 0} a_n t^n,$$

and \mathbf{Seq}_A consists of sequence for which the above limit exists and it is finite. Using (2) we deduce that a series $\sum_{n>0} a(n)$ is A-convergent if and only if the limit

$$\lim_{t \to 1^-} \sum_{n \ge 0} a_n t^n$$

exists and it is finite. We have the following immediate result.

Proposition 2.1. Suppose that f(z) is a holomorphic function defined in an open neighborhood of the set $\{1\} \cup \{|z|\} \subset \mathbb{C}$. If $\sum_{n\geq 0} a_n z^n$ is the Taylor series expansion of f at z=0 then the corresponding formal power series $[f] = \sum_{n\geq 0} a_n t^n$ is A-regular at t=1,

$$[f]^{(k)}(1)_A = f^k(1),$$

and the series

$$[f](r)_A = \sum_k \frac{[f]^{(k)}(1)_A}{k!} r^k$$

coincides with the Taylor expansion of f at z = 1, and it converges to f(1+r).

²This was apparently known and used by Euler.

Corollary 2.2. Suppose that f(z) is a holomorphic function defined in an open neighborhood of the set $\{1\} \cup \{|z|\} \subset \mathbb{C}$ and $\sum_{n\geq 0} a_n z^n$ is the Taylor series expansion of f at z=0. Then for every T in $\mathfrak O$ such that $c_0(T)=1$, any $P\in \mathbb{R}[x]$, and any $x\in \mathbb{R}$ we have

$${}^{A}\sum_{n} a_{n} \mathbf{T}^{n} P(x) = \sum_{k>0} \frac{f^{k}(1)}{k!} (\mathbf{T} - 1)^{k} P(x).$$

Let $k \in \mathbb{N}$. A sequence $a \in \mathbf{Seq}$ is said to be C_k -convergent (or Cesàro convergent of order k) if the limit

$$\lim_{n \to \infty} \frac{S^k[a](n)}{\binom{n+k}{k}}$$

exists and it is finite. We denote this limit by $C_k \lim a(n)$. A series $\sum_{n\geq 0} a(n)$ is said to be C_k -convergent if the sequence of partial sums S[a] is C_k convergent. Thus the C_k -sum of this series is

$${}^{C_k}\sum_{n\geq 0}a(n)=\lim_{n\to\infty}\frac{\boldsymbol{S}^{k+1}[a](n)}{\binom{n+k}{k}}.$$

More explicitly, we have (see [3, Eq.(5.4.5)])

$$C_k \sum_{n>0} a(n) = \lim_{n \to \infty} \frac{1}{\binom{n+k}{k}} \left(\sum_{\nu=0}^n \binom{\nu+k}{k} a(n-\nu) \right)$$

Hence

$$C_k \sum_{n \ge 0} a(n) \iff \mathbf{S}^{k+1}[a](n) \sim A\binom{n+k}{k} \sim A\frac{n^k}{k!},$$

where

$$a \sim b \iff \lim_{n \to \infty} \frac{a(n)}{b(n)} = 1,$$

if $a(n), b(n) \neq 0$, for $n \gg 0$.

The C_0 convergence is equivalent with the classical convergence and it is known (see [3, Thm. 43, 55]) that

$$C_k \prec C_{k'} \prec A, \ \forall k < k'.$$

Given this fact, we define a sequence to be C-convergent (Cesàro convergent) if it is C_k -convergent for some $k \in \mathbb{N}$. Note that $C \prec A$. Both the C and A methods are shift invariant, i.e., they satisfy the condition (1.2).

We want to comment a bit about possible methods of establishing C-convergence. To formulate a general strategy we need to introduce a classical notation. More precisely, if $f(t) = \sum_{n\geq 0} a_n t^n$ is a formal power series we let $[t^n]f(t)$ denote the coefficient of t^n in this power series, i.e. $[t^n]f(t) = a_n$.

Let $f(t) = \sum_{n\geq 0} a_n t^n$. Then the series $\sum_{n\geq 0} a_n t^n$ C-converges to A if and only if there exists a nonnegative real number α such that

$$[t^n]\left((1-t)^{-(\alpha+1)}f(t)\right) \sim A\frac{n^\alpha}{\Gamma(\alpha+1)},$$

where Γ is Euler's Gamma function. For a proof we refer to [3, Thm. 43].

Definition 2.3. We say that a power series $f(t) = \sum_{n\geq 0} a_n t^n$ is Cesàro convenient (or C-convenient) at 1 if the following hold.

- (i) The radius of convergences of the series is ≥ 1
- (ii) The function f is regular at z=1 and has finitely many singularities $\zeta_1,\ldots,\zeta_\nu\neq 1$ on the unit circle $\{|z|=1\}$.
- (iii) There exist $\varepsilon>0$ and $\theta\in(0,\frac{\pi}{2})$ such that f admits a continuation to the dimpled disk

$$\Delta_{\varepsilon,\theta} := \left\{ z \in \mathbb{C}; \ |z| < 1 + \varepsilon, \ \arg\left(\frac{z}{\zeta_j} - 1\right) > \theta, \ \forall j = 1, \dots, \nu \right\}.$$

(iv) For every singular point ζ_j there exists a positive integer m_j such that

$$f(z) = O((z - \zeta_j)^{-m_j})$$
 as $z \to \zeta_j$, $z \in \Delta$.

The results in [2, Chap. VI] implies that the collection \mathcal{R}_C of C-convenient power series is a ring satisfying

$$f \in \mathcal{R}_C \Longleftrightarrow \frac{df}{dt} \in \mathcal{R}_C.$$

Invoking [2, Thm VI.5] we deduce the following useful consequence.

Corollary 2.4. Let $f \in \mathbb{R}[[t]]$ be a power series C-convenient at 1. Then f is C-regular at 1 and

$$f^{k}(1)_{C} = f^{(k)}(1)_{A} = f^{(k)}(1).$$

Using [2, VII.7] we obtain the following useful result.

Corollary 2.5. (a) The power series

$$(1+t)^{-m} = \sum_{n>0} {n+m-1 \choose n} (-t)^n, \quad m \ge 1, \quad \log(1+t) = \sum_{n>1} (-1)^{n+1} \frac{t^n}{n}$$

are C-regular at 1.

(b) If f(z) is an algebraic function defined on the unit disk |z| < 1 and regular at z = 1 then the Taylor series of f at z = 0 is C-regular at 1.

Recall that the Cauchy product of two sequences $a, b \in \mathbf{Seq}$ is the sequence a * b,

$$a * b(n) = \sum_{i=0}^{n} a(n-i)b(i), \forall n \in \mathbb{N}.$$

A regularization method is said to be multiplicative if

$$^{\mu}\sum_{n}a*b(n)=\left(^{\mu}\sum_{n}a(n)\right)\left(^{\mu}\sum_{n}b(n)\right),$$

for any μ -convergent series $\sum_{n\geq 0} a(n)$ and $\sum_{n\geq 0} b(n)$. The results of [3, Chap.X] show that the C and A methods are multiplicative.

For any regularization method μ and $c \in \mathbb{R}$ we denote by $\mathbb{R}[[t]]_{\mu}$ the set of series that are μ -regular at t = 1.

Proposition 2.6. Let μ be a multiplicative regularization method. Then $\mathbb{R}[[t]]_{\mu}$ is a commutative ring with one and we have the product rule

$$(f \cdot g)^{(n)}(1)_{\mu} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(1)_{\mu} \cdot g^{(n-k)}(1)_{\mu}.$$

Moreover, if $T \in \mathcal{O}$ is such that $c_0(T) = 1$ then the map

$$\mathbb{R}[[t]]_{\mu} \ni f \mapsto f(T)_{\mu} \in \mathcal{O}$$

is a ring morphism.

Proof. The product formula follows from the iterated application of the equalities

$$D_t(fg) = (D_t f)g + f(D_t g), \quad (fg)(1)_{\mu} = f(1)_{\mu} \cdot g(1)_{\mu}, \quad f'(1)_{\mu} = (D_t f)(1)_{\mu},$$

where $D_t : \mathbb{R}[[t]] \to \mathbb{R}[[t]]$ is the formal differentiation operator $\frac{d}{dt}$. The last statement is an immediate application of the above product rule.

Remark 2.7. The inclusion $\mathbb{R}[[t]]_C \subset \mathbb{R}[[t]]_A$ is strict. For example, the power series

$$f(z) = e^{1/(1+z)}$$

satisfies the assumption of Proposition 2.1 so that the associated formal power series [f] is A-regular at 1. On the other hand, the arguments in $[3, \S 5.12]$ show that [f] is not C-regular at 1.

Consider the translation operator $U^h \in \mathcal{O}$. From Taylor's formula

$$p(x+h) = \sum_{n\geq 0} \frac{h^n}{n!} D^n p(x)$$

we deduce that

$$\sigma_{II^h}(t) = e^{th}.$$

Set $\Delta_h := U^h - 1$. Using Corollary 2.5 and Theorem 1.1 we deduce the following result.

Corollary 2.8. For any $P \in \mathbb{R}[x]$ we have

$${}^{C}\sum_{n\geq 0} (-1)^{n} P(x+nh) = \frac{1}{2} \left(\sum_{n\geq 0} \frac{(-1)^{n}}{2^{n}} \Delta_{h}^{n} \right) P(x). \tag{2.1}$$

Observe that

$$\left(1 + \frac{1}{2}\Delta_h\right) \left(\sum_{n \ge 0} \frac{(-1)^n}{2^n} \Delta_h^n\right) = 1$$

so that $\frac{1}{2}\sum_{n\geq 0}\frac{(-1)^n}{2^n}\Delta_h^n$ is the inverse of the operator $2+\Delta_h$. We thus have

$${}^{C}\sum_{n\geq 0}(-1)^{n}P(x+nh)=(2+\Delta_{h})^{-1}P(x)=(1+\mathbf{U}^{h})^{-1}P(x). \tag{2.2}$$

Remark 2.9. Here is a heuristic explanation of the equality (2.2) assuming the Cesàro convergence of the series $\sum_{n\geq 0} (-1)^n P(x+nh)$. Denote by S(x) the Cesàro sum of this series. Then

$$S(x+h) = {}^{C}\sum_{n\geq 0} (-1)^{n} P(x+(n+1)h)$$

$$\stackrel{(1.2)}{=} - {}^{C} \sum_{n \ge 0} (-1)^n P(x+h) + P(x) = -S(x) + P(x).$$

Hence

$$S(x+h) + S(x) = P(x), \ \forall x \in \mathbb{R}.$$

If we knew that S(x) is a polynomial we would then deduce

$$S(x) = (1 + \mathbf{U}^h)^{-1} P(x).$$

The inverse of $1 + U^h$ can be explicitly expressed using Euler numbers and polynomials, [4, Eq. (14), p.134]. The Euler numbers E_k are defined by the Taylor expansion

$$\frac{1}{\cosh t} = \frac{2}{e^t + e^{-t}} = \sum_{k > 0} \frac{E_k}{k!} t^k.$$

Since $\cosh t$ is an even function we deduce that $E_k=0$ for odd k. They satisfy the recurrence relation

$$E_n + \binom{n}{2} E_{n-2} + \binom{n}{4} E_{n-4} + \dots = 0, \quad n \ge 2.$$
 (2.3)

Here are the first few Euler numbers.

	\overline{n}	0	2	4	6	8	10	12	14	16
Ì	E_n	1	-1	5	-61	1,385	-50,521	2,702,765	-199,360,981	19,391,512,145

Then

$$\frac{1}{1+\boldsymbol{U}^h} = \frac{\boldsymbol{U}^{-\frac{h}{2}}}{\boldsymbol{U}^{\frac{h}{2}} + \boldsymbol{U}^{-\frac{h}{2}}} = \frac{\boldsymbol{U}^{-\frac{1}{2}}}{e^{\frac{D}{2}} + e^{-\frac{D}{2}}} = \frac{1}{2}\boldsymbol{U}^{-\frac{h}{2}} \frac{1}{\cosh \frac{hD}{2}} = \frac{1}{2}\boldsymbol{U}^{-\frac{h}{2}} \sum_{k>0} \frac{E_k h^k}{2^k k!} D^k.$$

Hence

$${}^{C}\sum_{n>0}(-1)^{n}P(x+nh) = \frac{1}{2}\sum_{k>0}\frac{E_{k}h^{k}}{2^{k}k!}P^{(k)}\left(x-\frac{h}{2}\right). \tag{2.4}$$

When $P(x) = x^m$, h = 1, we have

$${}^{C}\sum_{n\geq 0}(-1)^{n}(x+n)^{m} = \frac{1}{2}\sum_{k\geq 0} {m \choose k} \frac{E_{k}}{2^{k}} \left(x - \frac{1}{2}\right)^{m-k}.$$
 (2.5)

Setting x = 0 and using the equality $E_{2j+1} = 0$, $\forall j$ we conclude that

$${}^{C}\sum_{n\geq 0}(-1)^{n}n^{m} = \frac{1}{2^{m+1}}\sum_{k\geq 0}(-1)^{m-k}E_{k}\binom{m}{k} = \frac{(-1)^{m}}{2^{m+1}}\sum_{k\geq 0}E_{2k}\binom{m}{2k}.$$
 (2.6)

Using (2.3) we deduce that when m is even, m = 2m', m' > 0 we have

$${}^{C}\sum_{n\geq 0}(-1)^{n}n^{2m'}=0. (2.7)$$

For example

$$1 - 1 + 1 - 1 + \dots \stackrel{C}{=} \frac{1}{2},$$
 (\dagger_0)

$$-1 + 2 - 3 + 4 - \dots \stackrel{C}{=} -\frac{1}{4},$$
 (\dagger_1)

$$-1 + 2^3 - 3^3 + 4^3 - \dots \stackrel{C}{=} \frac{1}{8}, \tag{\dagger_3}$$

$$-1^5 + 2^5 - 3^5 + 4^5 - \dots \stackrel{C}{=} -\frac{1}{4}.$$
 (†₅)

When $P(x) = {x \choose m}$, x = 0, h = 1 then it is more convenient to use (2.1) because

$$\Delta \binom{x}{k} = \binom{x}{k-1}, \ \forall k, x.$$

We deduce

$${}^{C}\sum_{n\geq 0}(-1)^{n}\binom{n}{m} = \frac{1}{2}\sum_{k=1}^{m}\frac{(-1)^{k}}{2^{k}}\binom{0}{m-k} = \frac{(-1)^{m}}{2^{m+1}}.$$
 (2.8)

Example 2.10. Consider the translation invariant operator

$$T: \mathbb{R}[x] \to \mathbb{R}[x], \ P(x) \mapsto \int_0^\infty e^{-s} P(x+s) dx.$$

Set R = T - 1. As explained in [1, II.3.B], the operators T and R are intimately related to the Laguerre polynomials. We have R = DT = TD and³

$$\sigma_{\mathbf{T}}(t) = \frac{1}{1-t}\sigma_{\mathbf{R}}(t) = \frac{1}{1-t} - 1 = \frac{t}{1-t}.$$

If $P \in \mathbb{R}[x]$ is a polynomial of degree m then

$$T^{k}P(x)_{x=0} = (1 + D + \dots + D^{m})P(x)_{x=0}$$
$$= \int_{\mathbb{R}^{k}_{>0}} e^{-(s_{1} + s_{2} + \dots + s_{k})}P(s_{1} + \dots + s_{k})ds_{1} \cdots ds_{k}.$$

For $t \geq 0$ we denote by $\Delta_k(t)$ the (k-1) simplex

$$\Delta_{k-1}(t) := \{ (s_1, \dots, s_k) \in \mathbb{R}^k_{\geq 0}; \ s_1 + \dots + s_k = t \},$$

and by $dV_{k-1}(t)$ the Euclidean volume element on $\Delta_{k-1}(t)$. Integrating along the fibers of the function $f: \mathbb{R}^k_{\geq 0} \to [0, \infty), \ f(s_1, \dots, s_k) = s_1 + \dots + s_k$ we deduce

$$\int_{\mathbb{R}^{k}_{\geq 0}} e^{-(s_{1}+s_{2}+\cdots+s_{k})} P(s_{1}+\cdots+s_{k}) ds_{1} \cdots ds_{k} = \int_{0}^{\infty} \left(\int_{\Delta_{k-1}(t)} \frac{1}{|\nabla f|} dV_{k-1}(t) \right) e^{-t} P(t) dt$$

$$= \frac{v_{k-1}}{\sqrt{k}} \int_{0}^{\infty} e^{-s} s^{k-1} P(s) ds,$$

where v_{k-1} is the (k-1)-dimensional volume of the (k-1)-simplex $\Delta_{k-1} = \Delta_{k-1}(t)_{t=1}$.

To compute the volume v_{k-1} we view Δ_k is a regular k-simplex with distinguished base Δ_k , and distinguished vertex $(0, \ldots, 0, 1) \in \mathbb{R}^{k+1}$. The distance d_k from the vertex to the base is the distance from the vertex to the center of the base. We have

$$d_k^2 = 1 + \frac{1}{k}, \ d_k = \sqrt{\frac{k+1}{k}}, \ v_k = \frac{1}{k} d_k v_{k-1} = \left(\frac{k+1}{k^3}\right)^{1/2} v_{k-1}.$$

Since $v_0 = 1$ we deduce

$$v_k = \frac{(k+1)^{1/2}}{k!}, \quad T^k P(x)_{x=0} = \frac{1}{(k-1)!} \int_0^\infty e^{-s} s^{k-1} P(s) ds,$$

and

$$\mathbf{R}^k P(x)_{x=0} = \frac{1}{(k-1)!} \int_0^\infty e^{-s} s^{k-1} P^{(k)}(s) ds.$$

³We can write formally $T = \int_0^\infty e^{-s} U^s ds = \int_0^\infty e^{-s(1-D)} ds = (1+D)^{-1}$, so that $\sigma_T(t) = \frac{1}{1-t}$.

Using Theorem 1.1 and Corollary 2.4 with the C-convenient series $f(t) = (1+t)^{-1}$ we deduce

$${}^{C}\sum_{n\geq 0} (-1)^{n} \mathbf{T}^{n} P(x)_{x=0} = {}^{C}\sum_{n\geq 0} (-1)^{n} \frac{1}{(n-1)!} \int_{0}^{\infty} e^{-s} s^{n-1} P(s) ds$$

$$= \int_0^\infty \left(\sum_{k=0}^{\deg P} \frac{(-1)^k}{2^{k+1}(k-1)!} s^{k-1} P^{(k)}(s) \right) ds.$$

If we let $P(s) = s^m$ we deduce

$$\int_0^\infty e^{-s} s^{n-1} P(s) ds = (m+n-1)!, \quad \int_0^\infty e^{-s} s^{k-1} P^{(k)}(s) ds = [m]_k (m-1)! = [m-1]_{k-1} m!,$$

and

$${}^{C}\sum_{n\geq 0}(-1)^{n}\binom{m+n-1}{m} = \sum_{k=0}^{m}\frac{(-1)^{k}}{2^{k+1}}\binom{m-1}{k-1}.$$
 (2.9)

Let us point out that (2.9) can be obtained from (2.8) using the shift-invariance of the Cesàro regularization method.

References

- [1] M. Aigner, Combinatorial Theory, Springer Verlag, 1997.
- [2] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
- [3] G.H. Hardy, Divergent Series, Chelsea Publishing Co. 1991.
- [4] N.E. Nörlund, Mémoire sur les polynomes de Bernoulli, Acta Math. 43(1922), 121-194.