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A Game Theoretic Approach for Solving

Multiobjective Linear Programming Problems

Irinel DRAGAN

Abstract. The nucleolus is one of the important concepts of solution in the
theory of cooperative n-person games with transferable utilities (TU-games). In
the set of efficient and individually rational outcomes, the nucleolus is looking
for the outcome which is minimizing the unhappiness of the most unhappy coali-
tion, of the second most unhappy coalition, etc. The unhappiness is measured by
the values of the excess functions of coalitions relative to the outcome, taken in
nonincreasing order. D. Schmeidler (1969) proved that on this set of outcomes,
called the imputations, the nucleolus is unique, under some regularity conditions.
Kopelowitz (1967) has given a method to compute it, followed by other methods
due to Bruynel (1978), Maschler-Peleg-Shapley (1979), Dragan (1981), Potters-
Reijnierse-Ansing (1996), etc. The generalized nucleolus, due to M. Justman
(1977), is considering as a set of constraints, to replace the constraints of the
imputations from game theory, the intersection of a finite number of half spaces,
defined by a linear system of inequalities, and is building a criterion of unhappi-
ness, similar to the one from game theory, by means of a group of linear objective
functions, replacing the excess functions. In general, the solution is not unique,
under some regularity conditions reminding the definition of the nucleoulus.

In the present paper, we state any linear multiobjective problem as the prob-
lem of finding the generalized nucleolus, we show how such a problem can be
solved, by giving a method similar to the method of finding the nucleolus, where
some duality theory is used, and illustrate it by an example. A motivation for
the fact of using the generalized nucleolus, even though it may not provide a
unique solution, is the fact that it provides a Pareto optimal solution.
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1 The Multiobjective Linear Programming Problems

and the Generalized Nucleolus

Consider the multiobjective linear programing (MOLP) problem, defined by a feasible set

Ω = {x ∈ R
n : Ax ≤ b, x ≥ 0}, (1.1)
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and a set of p linear functions to be minimized

U = {uk(x) : uk(x) = αT
k x+ βk, k = 1, . . . , p}, (1.2)

where A is a m × n matrix, b ∈ R
m, αk ∈ R

n, and βk ∈ R, for k = 1, . . . , p. It is well
known that in general a vector x minimizing one of the functions in U does not minimize
the others. Therefore, a concept of solution for a problem like (1) and (2), with p ≥ 2,
should be defined.

In Game Theory, if (N, ν) is a cooperative n - person game with transferable utilities
(TU-game), that is N is a finite set, |N | = n, and ν is a function defined on the set of
subsets of N , with ν(∅) = 0, then any x ∈ R

n satisfying

∑

i∈N

xi = ν(N), xi ≥ ν({i}), ∀ i ∈ N, (1.3)

is an efficient and coalitional rational outcome of the game, called an imputation (see [6]).
For each coalition S, the excess of S associated with an imputation x is e(S, x) = ν(S)−x(S),
where as usual x(S) =

∑
i∈S xi; for the set of all coalitions we have a set of p = 2n−2 linear

functions
E = {e(S, x) : e(S, x) = ν(S)− x(S), S ⊂ N, S 6= ∅}. (1.4)

Obviously, the grand coalition which will always have excess zero, due to (1.3), will be
missing, and the subset S = ∅, which is not considered a coalition, is also missing. The
larger is the excess of some coalition S, the unhappier is the coalition, because the smaller is
the total gain x(S) of the coalition. Therefore, on the set of imputations, we are looking for
outcomes which minimize the excesses of the coalitions. We recognize that (1.3) and (1.4) is
a multiobjective linear programming problem, in which (1.3) has the form (1.1) and the set
E is similar to (1.2). Of course, in (1.3) we get the form (1.1) if we take as new variables the
differences xi−ν({i}), and in (1.4) the vectors αk are the characteristic vectors of coalitions,
to get the functions of the form (1.2).

In [8], D. Schmeidler has introduced the nucleoulus of a TU game as follows: for each
imputation x, consider the vector θ(x) of the excesses taken in a nonincreasing order; then,
the nucleoulus of the game is the set Nu(N, ν) defined by

Nu(N, ν) = {x′ ∈ I : θ(x′) ≤L θ(x), ∀x ∈ I}, (1.5)

where ≤L is the lexicographic ordering of the vector of excesses and I is the set of imputa-
tions. A full description of the topic can be found in [6].

In [3], M. Justman has introduced the generalized nucleolus associated with a set of linear
constraints (1.1), and a set of linear functions (1.2) to be minimized, as follows: for each x,
a feasible solution of (1.1), consider the vector θ(x) of the values of the linear functions (1.2)
taken in a nonincreasing order; then the generalized nucleolus is the set Nu(Ω, U) defined
by

Nu(Ω, U) = {x′ ∈ Ω : θ(x′) ≤L θ(x), ∀x ∈ Ω}. (1.6)

A comparison of the properties of the generalized nucleolus and the nucleolus follows the
definition in [3]. The following result from [3] is straight forward:
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If Ω is a nonempty compact set and U is a set of continuous functions defined on Ω,
then Nu(Ω, U) 6= ∅.

Note that these conditions hold in the case of a TU game, so that the nucleolus does
exist in that case; moreover, as proved by Schmeidler, another result is helping to prove the
uniqueness of the nucleolus of a TU game.

Note also that the interpretation of the generalized nucleolus as the point(s) of the
minimal unhappiness of the most unhappy player, the second most unhappy player, etc., is
an argument showing that the generalized nucleolus is a ”good” concept of solution for the
multiobjective problems. Another argument leading to the same conclusion is offered by the
application of the theorem to the case of multiobjective problems:

Theorem 1.1 If Ω is a nonempty compact set, an intersection of half spaces defined in
(1.1), and U is a set of linear functions (1.2), defined on Ω, then any point of the generalized
nucleolus is a Pareto optimum point of Ω relative to U .

Proof: Recall that a point x⋆ ∈ Ω is a Pareto optimum point of Ω, relative to the set of
functions U , when there does not exist a point x ∈ Ω, such that

uk(x) ≤ uk(x
⋆), k = 1, . . . , p, (1.7)

and

ul(x) < ul(x
⋆), for some l ∈ {1, . . . , p}. (1.8)

Suppose that x⋆ ∈ Nu(Ω, U) is not a Pareto optimum point of Ω; then, there is a point
x ∈ Ω such that (1.7) and (1.8) hold. We can assume, without loss of generality, that
θk(x) = uk(x), ∀k = 1, . . . , p, that is the numbering of functions was chosen in such a way
that we have

u1(x) ≥ u2(x) ≥ · · · ≥ up(x). (1.9)

Consider the p-vector η(x⋆) = (uk(x
⋆)), whose coordinates are the values of the already

numbered functions at the point x⋆. We can not say that θk(x
⋆) = uk(x

⋆) for some k.
According to our hypotheses (1.7) and (1.8), we get θk(x) ≤ ηk(x

⋆), k = 1, . . . , p, and
θl(x) < ηl(x

⋆) for some l ∈ {1, . . . , p}. As we have

θ1(x) ≤ η1(x
⋆) ≤ maxuk(x

⋆) = θ1(x
⋆), (1.10)

the inequality θ1(x) ≤ θ1(x
⋆) holds. But we have x⋆ ∈ Nu(Ω, U), and x ∈ Ω shows that the

inequality θ1(x) ≤ θ1(x
⋆) can not be true; hence, θ1(x) = η1(x

⋆) = θ1(x
⋆). If we consider the

pair θ2(x) and η2(x
⋆), and we repeat the reasoning, we get θ2(x) = η2(x

⋆) = θ2(x
⋆). Now,

by induction, we prove that θk(x) ≤ ηk(x
⋆), k = 1, . . . , p, are satisfied as equalities. This

fact contradicts the hypothesis θl(x) < ηl(x
⋆) for some index l ∈ {1, . . . , p}, the theorem

follows. �

The meaning of Theorem 1.1 is that by taking any point in the set Nu(Ω, U) as a solution
of the MOLP problem, we are taking in the set of Pareto optimum points a point with
supplementary properties.
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2 Finding the generalized nucleolus as a solution for an

MOLP problem

The main idea of the algorithm to be pressented below for solving MOLP problems will be
that of replacing in each step the given problem by a new MOLP problem in which some of
the objective functions are included in the constraints defining the new feasible set, equated
to some constants; recall that the same idea was used by Kopelowitz in his algorithm for
computing the nucleolus (see [4] and [6]). In this way, the number of the objective functions
is reduced in any step of the algorithm, until the objective functions are exhausted. The
algorithm keeps the generalized nucleolus of the initial feasible set in the successive feasible
sets and one proves that the final feasible set represents just the generalized nucleolus, i.e.
the solution of the MOLP problem. Moreover, one point in the generalized nucleolus is also
obtained by the algorithm. The method was suggested by [4] and [5]. The results needed to
justify the algorithm are presented in this section, while the algorithm will be stated in the
next section.

Associated with the MOLP problem (1.1) and (1.2), consider the linear programming
problem (P):

min{t : x ∈ Ω, uk(x) ≤ t, k = 1, . . . , p}. (2.1)

As the second group of restrictions can be written as maxuk(x) ≤ t, it is clear that if Ω 6= ∅,
the problem (P) has feasible solutions and vice versa. Thus, the case Ω = ∅, which is making
the MOLP problem senseless, is discovered in solving the problem (P). Otherwise, if Ω is a
nonempty compact set, the problem (P) has an optimal solution. The crucial point in the
construction of a primal method for solving the MOLP problem is the following:

Lemma 2.1 If Ω is a nonempty compact set and t⋆ is the optimal value of (P), then there
is an integer p⋆, (1 ≤ p⋆ ≤ p), and a set of indices ki1 , . . . , kip⋆ in {1, . . . , p}, such that for
any optimal solution of (P), let say (x⋆, t⋆), we have

uki
(x⋆) = t⋆, i = 1, . . . , p⋆. (2.2)

Proof: As t⋆ is the optimal value of (P), suppose that for each k ∈ {1, . . . , p}, there is an
optimal solution (xk, t⋆) such that uk(x

k) < t⋆, where xk ∈ Ω, k = 1, . . . , p, are distinct
vectors, or not. We want to show that this can not be true.
Consider the vector

x =
1

p

p∑

k=1

xk, (2.3)

which is a point in Ω, because this is a convex set. For any j ∈ {1, . . . , p}, we have

uj(x
k) ≤ t⋆, if j 6= k, uk(x

k) < t⋆. (2.4)

From (2.3), by the linearity of the objective functions, we get uj(x) < t⋆, for all j ∈
{1, . . . , p}. This says that (x,maxuj(x)) is a feasible solution of (P), which gives for the
objective function a lower value than t⋆, the optimal value. The contradiction proves the
lemma. �
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Note that the lemma says that by adding to the constraints of problem (P) the equations
uki

(x) = t⋆, for i = 1, . . . , p⋆, no optimal solution has been lost. This is exactly what we
want to do in order to find the generalized nucleolus, for which the elements x⋆ will be further
proved to form pairs (x⋆, t⋆) included in the set of optimal solutions of our problem (P).

Obviously, we should explain how the indices of the functions appearing in these equa-
tions (2.2) can be found, a fact to be done at the end of this section. Notice that the lemma
uses in the proof the linearity of the objective functions, hence the extension to the nonlinear
case is really a problem.

Example 2.2 Consider the MOLP problem

Minimize u1(x) = 2x+ y, u2(x) = x− 2y,

on the set Ω, defined by the system of linear inequalities

x− y ≤ 1, −x+ y ≤ 2, x+ y ≤ 3, x+ y ≥ 1, x ≥ 0, y ≥ 0.

Note that t is an unconstrained variable. The problem (P) shown in (2.1) is:
Minimize t, subject to

x− y ≤ 1, −x+ y ≤ 2, x+ y ≤ 3, x+ y ≥ 1, 2x+ y ≤ t, x− 2y ≤ t, x ≥ 0, y ≥ 0.

We can compute an optimal solution for this problem: x⋆ = 0, y⋆ = 1, t⋆ = 1. One
may check its feasibility directly, and the optimality, if we write the dual problem and the
complementarity conditions. Moreover, as it will be explained at the end of the section, we
shall be able to determine that for any optimal solution of (P), we have 2x+ y = 1; hence,
p⋆ = 1, and this equation should be added to the constraints of problem (P), to form a new
MOLP problem.

Note that in the above problem the optimal solution is unique; therefore, there is no need
to form a new MOLP problem and solve it. In general, there are several optimal solutions
for the problem (P), so that we should form the second MOLP problem and solve it. If the
optimal solution is unique, then for this solution we can compute the corresponding vector
θ(x⋆) and in the vector will appear the optimal values of t for the next problems.
Now, suppose that by some method it has been found a set of indices Π, with |Π| = p⋆,
1 ≤ p⋆ ≤ p, such that for any optimal solution (x⋆, t⋆) of (P), we have

uk(x
⋆) = t⋆, ∀ k ∈ Π, (2.5)

and two cases may arise: either p⋆ = p, or p⋆ < p. Obviously, if p⋆ < p, then we have beside
(2.5) the inequalities

uk(x
⋆) < t⋆, ∀ k /∈ Π. (2.6)

Theorem 2.4 discusses the first case, which will be our stopping criterion of the algorithm,
while Lemma 2.5 discusses the second case, and leads to the algorithm further justified by
Theorem 2.6. The following result on a general property of any element in the generalized
nucleolus is valid in both cases, p⋆ = p, and p⋆ < p.
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Lemma 2.3 If Ω is a nonempty compact set, t⋆ is the optimal value of problem (P), and
p⋆ ≤ p is the integer just defined, then for any element x⋆ ∈ Nu(Ω, U), we get (x⋆, t⋆) is an
optimal solution of problem (P), and we have

θ1(x
⋆) = · · · = θp⋆(x⋆) = t⋆. (2.7)

Proof: Let (x′, t⋆) be an optimal solution of (P); then, x′ ∈ Ω and we have by (1.6)
that θ(x⋆) ≤L θ(x′). Thus, θ1(x

⋆) ≤ θ1(x
′), and according to the definition of p⋆, we

get θ1(x
′) = t⋆, that is θ1(x

⋆) ≤ t⋆. This inequality and the definition of θ(x⋆), imply
uk(x

⋆) ≤ t⋆, for all k = 1, . . . , p, so that (x⋆, t⋆) is an optimal solution of problem (P).
Obviously, the maximal value of the objectives at x⋆ is t⋆, otherwise t⋆ would not be the
optimal value. The equalities (2.7) will follow from the definition of p⋆. �

Note that by the lemma, no element in the generalized nucleolus is lost by adding (2.5)
to the set of constraints. Therefore, in the second case, p⋆ < p, we should further consider
the new MOLP problem of minimizing the objectives uk(x), ∀k /∈ Π, on the new feasible
set

Ω⋆ = {x ∈ Ω : uk(x) = t⋆, ∀k ∈ Π}, (2.8)

where t⋆ is the optimal value of (P ) and Π is defined by (2.5) and (2.6).
Now, consider the new set

SOPT (P ) = {x ∈ Ω : (x, t⋆) is an optimal solution of (P )} ⊆ Ω⋆. (2.9)

Lemma 2.3 proves the inclusion and shows that Nu(Ω, U) ⊆ SOPT (P ), hence from (2.9) it
follows that Nu(Ω, U) ⊆ Ω⋆. Recall that the result holds in both cases p⋆ = p and p⋆ < p;
but we shall prove now that in the first case we have SOPT = Ω⋆.

Theorem 2.4 If Ω is a nonempty compact set, and t⋆ is the optimal value of (P ), and for
any optimal solution (x⋆, t⋆) of (P ) we have uk(x

⋆) = t⋆, for k = 1, . . . , p, then we obtain
Nu(Ω, U) = Ω⋆.

Proof: As we already remarked, we have Nu(Ω, U) ⊆ SOPT (P ). Let us suppose that
there is x′ ∈ SOPT (P ), such that x′ /∈ Nu(Ω, U). Then, there is x⋆ ∈ Nu(Ω, U) such that
θ(x⋆) ≤L θ(x′). But, from the hypothesis we get θk(x

′) = t⋆, ∀ k = 1, . . . , p, and therefore
we get θk(x

⋆) = t⋆, ∀ k = 1, . . . , p. Hence, θ(x′) = θ(x⋆), and the contradiction proves the
theorem. �

Theorem 2.4. shows that in the case p⋆ = p we have Nu(Ω, U) = Ω⋆, and the MOLP
problem is solved by determining the solution set. Now, one solution is available at the end
of the computation needed to solve the problem (P ), so that a point in Nu(Ω, U) is already
available. If more solutions are needed, then this set may be further explored. Theorem 2.4
is the stopping criterion for the method, and this is the case described earlier by saying that
the objective functions have been exhausted.

It remains to consider the case p⋆ < p; as we already remarked, by Lemma 2.3 we have
Nu(Ω, U) ⊆ Ω⋆, hence Ω⋆ 6= ∅. We form the new MOLP problem (P ⋆), asking to minimize
the functions in U⋆ = {uk(x) : uk(x), ∀ k /∈ Π}, on Ω⋆ shown in (2.8). Moreover, Ω⋆ is a
compact set, hence Nu(Ω⋆, U⋆) 6= ∅. Consider further the second case:
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Lemma 2.5 If Ω is a nonempty compact set, t⋆ is the optimal value of (P ), we have p⋆ < p,
so that we built the new set Ω⋆, given by (2.8), and the problem (P ⋆) is built by using the
objectives U⋆, then x⋆ ∈ Nu(Ω⋆, U⋆) implies that (x⋆, t⋆) is an optimal solution of (P ⋆),
and the equalities

θ1(x
⋆) = · · · = θp⋆(x⋆) = t⋆, (2.10)

hold.

Proof: Let (x′, t⋆) be an optimal solution of (P ); then, x′ ∈ Ω⋆ and we have θ(x⋆) ≤L θ(x′).
Thus, θ1(x

⋆) ≤ θ1(x
′) and according to the definition of p⋆, we get θ1(x

′) = t⋆, i.e. θ1(x
⋆) ≤

t⋆. This inequality and the definition of θ(x⋆) imply

uk(x
⋆) ≤ t⋆, k = 1, . . . , p, (2.11)

so that (x⋆, t⋆) is an optimal solution of (P ). Obviously, maxuk(x
⋆) = t⋆, otherwise t⋆ would

not be the optimal value. The equalities given in the lemma follow from the definition of p⋆.
�

Notice that Lemma 2.5 has proved that we have Nu(Ω⋆, U⋆) ⊆ SOPT (P ) ⊆ Ω⋆ ⊆ Ω. It
remains to be seen why we should continue to investigate Nu(Ω⋆, U⋆), by creating a new
linear programming problem (P ⋆), and how this procedure may end by solving the new
problem.

Theorem 2.6 If Ω is a nonempty compact set, and t⋆ is the optimal value of (P ), consider
the set Ω⋆ = {x ∈ Ω : uk(x) = t⋆, ∀ k ∈ Π}, where Π was defined by (2.5) and (2.6), then
we have Nu(Ω, U) = Nu(Ω⋆, U⋆).

Proof: We shall be proving the double inclusion, to conclude the equality of the two sets;
first, prove Nu(Ω, U) ⊆ Nu(Ω⋆, U⋆). Let x⋆ ∈ Nu(Ω, U); as Nu(Ω, U) ⊆ Ω⋆, we have
x⋆ ∈ Ω⋆. If x⋆ /∈ Nu(Ω⋆, U⋆), then there is x′ ∈ Nu(Ω⋆, U⋆) such that θ(x′) ≤L θ(x⋆).
From Lemma 2.3 and Theorem 2.4, we have

θ1(x
′) = θ1(x

⋆), . . . , θp′(x′) = θp′(x⋆); (2.12)

hence, there is an index k′, p′ ≤ k′ < p, so that θk(x
′) = θk(x

⋆), ∀ k = 1, . . . , k′, and
θk′+1(x

′) < θk′+1(x
⋆). As x′ ∈ Ω, the existence of k′ contradicts x⋆ ∈ Nu(Ω, U). In

consequence, Nu(Ω, U) ⊆ Nu(Ω⋆, U⋆). Second, we prove the opposite inclusion; let x′ ∈
Nu(Ω⋆, U⋆) and x′ /∈ Nu(Ω, U); as x′ ∈ Ω, we have θ(x⋆) ≤L θ(x′) for any x⋆ ∈ Nu(Ω, U).
From Lemma 2.3 and Theorem 2.4, we have

θ1(x
⋆) = θ1(x

′), . . . , θp′(x⋆) = θp′(x′), (2.13)

hence, there is an index k′, p⋆ ≤ k′ < p, so that θk(x
⋆) = θk(x

′), ∀ k = 1, . . . , k′, and
θk′+1(x

⋆) < θk′+1(x
′). As Nu(Ω, U) ⊆ Nu(Ω⋆, U⋆) implies x⋆ ∈ Nu(Ω⋆, U⋆), the last result

contradicts x′ ∈ Nu(Ω⋆, U⋆). It follows x′ ∈ Nu(Ω, U), in consequence we shall obtain
Nu(Ω⋆, U⋆) ⊆ Nu(Ω, U). The equality stated in the theorem holds. �
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Now, the above Theorem 2.6 justifies the step of the algorithm in case that p⋆ < p, i.e.
the objective functions have not been yet exhausted. Precisely, for finding the generalized
nucleolus of the initial MOLP problem, we can solve a new MOLP problem on the feasible
set Ω⋆, defined in (2.8), with respect to the objective functions

U⋆ = {uk(x) : uk(x) = αT
k x+ βk, k /∈ Π}. (2.14)

It remains to explain how can we find a set of indices Π introduced in Lemma 2.1; some
elements of the duality theory of linear programming will be used. Consider the dual problem
of (P ), taking into account that t is unconstrained and Ω can be written under the form

Ω = {x ∈ R
n : Aix ≤ bi, i = 1, . . . ,m; x ≥ 0}, (2.15)

where Ai is the row i of A. The problem (P ) is:

min{t : Aix ≤ bi, i = 1, . . . ,m; αT
k x− t ≤ −βk, k = 1, . . . , p; x ≥ 0}. (2.16)

Then, the dual problem (D) is

max{−
m∑

1

biσi +

p∑

1

βkτk :

m∑

1

Aiσi +

p∑

1

αkτk ≥ 0;

p∑

1

τk = 1; σ ≥ 0, τ ≥ 0}. (2.17)

where σ ∈ R
m and τ ∈ R

p are the vectors of the dual variables. The complementarity
conditions are

σi(bi −Aix) = 0, i = 1, . . . ,m, τk(t− uk(x)) = 0, k = 1, . . . , p. (2.18)

Suppose that the problem (P ) has been solved. Then, for any optimal solution (x⋆, t⋆)
of (P ), and any optimal solution of the dual (σ⋆, τ⋆) of (P ), by complementary slackness
theorem, the complementarity conditions should be satisfied; among them

τ⋆k (t
⋆ − uk(x

⋆)) = 0, k = 1, . . . , p. (2.19)

From (2.17), we have
∑p

1
τ⋆k = 1, hence in τ⋆ there is at least one positive coordinate. If we

denote
Π = {k : k ∈ {1, . . . , p}, τ⋆k > 0}, (2.20)

then, for any optimal solution (x⋆, t⋆) of (P ), we have

uk(x
⋆) = t⋆, ∀ k ∈ Π. (2.21)

If |Π| = p, the MOLP problem is solved, as explained by Theorem 2.4, if |Π| = p⋆ < p, then
the MOLP problem should be replaced by a new one, as explained by Theorem 2.6.

Example 2.7 Return to Example 2.2, and write the dual problem (2.17) for the problem
discussed in Example 2.2:

Minimize g = σ1 + 2σ2 + 3σ3 − σ4,

subject to

σ1 − σ2 + σ3 − σ4 + 2τ1 + τ2 ≥ 0, −σ1 + σ2 + σ3 − σ4 + τ1 − 2τ2 ≥ 0,

τ1 + τ2 = 1, σ1 ≥ 0, σ2 ≥ 0, σ3 ≥ 0, σ4 ≥ 0.
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Among the complementarity conditions we have

τ1(t− 2x− y) = 0, τ2(t− x+ 2y) = 0.

For the optimal solution which has been found by solving the problem (P ), i.e. x⋆ = 0, y⋆ =
1, t⋆ = 1, together with τ1 + τ2 = 1, give τ⋆1 = 1, τ⋆2 = 0. As explained above in (2.20)
and (2.21), we obtain Π = {1}, so that for any optimal solution of (P ) we should have
2x+ y = 1, equation to be added to the constraints in (P ), in order to get the new MOLP
problem, to be further solved for getting the generalized nucleolus of the initial problem.
This is: minimize the function

u2(x) = x− 2y,

on the set Ω⋆ defined by the system of linear inequalities

x− y ≤ 1, −x+ y ≤ 2, x+ y ≤ 3, x+ y ≥ 1, 2x+ y = 1, x ≥ 0, y ≥ 0.

If this problem is solved we get the optimal solution x⋆ = 0, y⋆ = 1, t⋆ = −2. The gen-
eralized nucleolus has only one solution x = 0, y = 1, and the objectives have the values
included in the vector θT = (1,−2). Of course, if we know that the solution of (P ) is unique,
we may compute the values of objectives at that solution and we should not solve the second
problem. If there are more objectives and we solved the second MOLP problem without
exhausting the objectives, we should go to the third MOLP problem.

3 Algorithm for solving a MOLP problem

The algorithm for solving a MOLP problem, that is for finding a point in the generalized
nucleolus of the compact feasible set Ω, relative to the linear functions U , can be stated as
follows:

STEP 0: Find out whether Ω 6= ∅, or not. In the second case, stop, the MOLP has no solution.
Before step s, s ≥ 1, a feasible set Ωs and a system of linear functions Us is available.
For s = 1, we have Ω1 = Ω, U1 = U , p1 = |U1| = p.

STEP s: 1. Solve the LP problem (P s):

Minimize t, s.t.x ∈ Ωs, us
k ≤ t, k = 1, . . . , ps.

Let ts be the optimal value.

2. Find a dual optimal solution (σs, τs) and determine the set of indices Πs = {k :
τ sk > 0}.

3. Update Ωs and Us; Ωs := {x ∈ Ωs : us
k = ts, k ∈ Πs}, then ps := ps − |Π

s|, and
Us := {us

k : k = 1, . . . , ps, k /∈ Ωs};

4. Check whether ps = 0 or ps > 0; in the first case, go to 5, in the second case,
take on s := s+ 1, and go to a new step;

5. Stop the procedure, the solution is the set Ωs; if only one element of the general-
ized nucleolus is desired, take the x-part of the optimal solution of the problem
(P s).
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The convergence in a finite number of steps is assured by the fact that in each step at least
one objective function of the current MOLP problem is incorporated in the restrictions.
Hence, the number of steps is at most p. Of course, a dual method of the method given
above can be stated, as it has been done in the case of the nucleolus (see [1] and [2]). Finally,
let us remark that in the case p ≥ n, if there are n linearly independent objectives, then the
generalized nucleolus consists of exactly one point, because at some step of the algorithm
all these n functions will be among the constraints equated with some constants and these
equations have only one solution.
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