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Abstract. A general framework has been developed to explore the positively
(flow) invariant sets, for a large class of time-variant, nonlinear dynamical sys-
tems. Thus, we introduce the concept of “diagonal invariance” defined by time-
dependent diagonal matrices and for arbitrary Hölder norms. The flow invariance
results are formulated as necessary and sufficient conditions for linear systems.
The approach to nonlinear systems relies on sufficient conditions that allow for-
mulating a comparison theorem where the comparison system exhibits linear
dynamics. We illustrate the applicability of our results for studying the diagonal
invariance of a class of nonlinear systems. This framework can be simply adapted
to discrete-time systems.
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1. Introduction

Starting with the period of the eighties, a large body of work has been invested in studying
the properties of the invariant sets with respect to the trajectories of dynamical systems.
Part of these researches have been summarized by the recent monographs [2], [3], [6], [8],
[9], [11], to cite just a few of the contributions brought to the discussed field. Beyond the
theoretical importance of the general results, the applicability area is drastically limited
to some classes of systems, among which the linear ones polarize the greatest interest.
Moreover, most of the results focus on constant (time independent) invariant sets, whereas
the case of time-dependent invariant sets has remained almost unexplored, except for a
very small number of papers considering the invariant sets generated by time-varying hyper-
rectangles [7], [10], [12], [13], [14], [15], [16].

The current paper develops a general framework for the analysis of flow invariant sets
defined by arbitrary Hölder norms and exhibiting arbitrary time dependence; this framework
is able to incorporate, the results mentioned above as particular cases. The basic concept
is the diagonal invariance, introduced in Section 2, for the analysis of which Sections 3 and
4 provide specialized tools. The major contribution of the paper is presented in Section 5
and consists in the formulation of a comparison theorem for diagonal invariance. Section 6
applies the comparison method to a class of nonlinear systems.
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2. Concept of Diagonal Invariance

Consider the nonlinear system

ẋ(t) = f (x(t), t) , x ∈ R
n, x(t0) = x0, (1)

where f : Rn×R+ → R
n is continuously differentiable in x ∈ R

n, continuous in t ∈ R+, and
f(0, t) = 0, ∀t ∈ R+, i.e. {0} is an equilibrium point (EP) of system (1). The state-space
trajectory of (1) initialized in x(t0) = x0 is denoted by x(t; t0, x0).

Let || ||p : Rn → R+ denote the Hölder p-norm in R
n. Given a positive vector function:

h(t) = [h1(t) · · ·hn(t)]
T
: R+ → R

n, hi(t) > 0, ∀t ∈ R+, i = 1, . . . , n, (2)

where T denotes the transposition, introduce the diagonal matrix

H(t) = diag {h1(t), · · · , h2(t)} (3)

and consider the time-dependent set (TDS)

Sp,h(t) =
{
x ∈ R

n| ||H−1(t)x||p ≤ 1
}
, t ≥ 0. (4)

It is obvious that TDS Sp,h(t) (4) is symmetrical and the axes of coordinates correspond-
ing to the variables of the state-space representation (1) play the role of symmetry axes,
regardless of the considered Hölder p-norm.

Definition 1. TDS Sp,h(t) (4) is flow (positively) invariant with respect to (abbreviated as
FI w.r.t.) system (1), if any trajectory initiated inside TDS (4) remains inside TDS (4) at
any time, i.e.

∀t0 ∈ R+, ∀x0 ∈ Sp,h(t0) ⇒ ∀t1 > t0, x(t1; t0, x0) ∈ Sp,h(t1). (5)

For many classes of systems, the existence of an invariant TDS Sp,h(t) (4) ensures the
existence of a whole set of TDSs that are FI w.r.t. the system trajectories, denoted by
Sp,ρh(t) and defined as in (4), but with respect to the vector function h̃(t) = ρh(t), ρ > 0,
instead of h(t). This situation can be regarded as a system property formulated as follows:

Definition 2. Given a positive vector function h(t) (2), system (1) is called locally / globally
diagonally-invariant relative to Hölder p-norm, with respect to h(t) (abbreviated as locally /
globally DIp,h(t)), if the TDS Sp,ρh(t) is FI w.r.t. system (1) for any ρ ∈ (0, 1]/ρ ∈ (0,∞).

The nomenclature ”diagonally invariant” is motivated by the diagonal form of the matrix
H(t) used for defining the TDSs FI w.r.t. system (1).

3. Diagonal Invariance of Nonlinear Systems

Lemma 1. Given a positive vector function h(t) (2) and an arbitrary Hölder p-norm, if the
function

W (x, t) : Rn × R+ → R+, W (x, t) = ||H−1(t)x||p (6)
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is nonincreasing along each trajectory of system (1), then TDS Sp,h(t) (4) is FI w.r.t. sys-
tem (1).
Proof. Assume that TDS (4) is not FI w.r.t. Sp,h(t). This means that there exist at least a
trajectory x∗(t) initialized inside Sp,h(t) and a time instant t∗ such that ||H−1(t∗)x∗(t∗)||p =
1 and ||H−1(t)x∗(t)||p > 1 for t > t∗, or, in other words, that W (t) is strictly increasing
in a vicinity of t∗. The proof is completed, since we have contradicted the hypothesis of
Lemma 1. �

Remark 1. Note that, in general, W (x, t) defined by (6) is not a weak Lyapunov function,
since for an arbitrary positive vector function h(t), the function W (x, t) is not necessarily
positive definite (see, e.g. [11])

Lemma 2. System (1) is equivalent to the system:

ẋ(t) = A(x(t), t)x(t) (7)

where the n× n matrix A(x, t) is defined by:

A(x, t) =

∫ 1

0

J(sx, t)ds (8)

and J(x, t) = [∂f(x, t)/∂x] ∈ R
n×n denotes the Jacobian matrix with respect to x of the

vector function f : Rn × R+ → R
n.

Proof. Consider the function ϕ(s, x, t) = f(sx, t), as suggested in [5], satisfying
∂ϕ

∂s
=

J(sx, t)x. The proof consists in expressing
1∫
0

∂ϕ

∂s
ds by two different forms, namely

∫ 1

0

∂ϕ

∂s
ds = f(sx, t)

∣∣∣
1

0
= f(x, t)− f(0, t) = f(x, t)

and ∫ 1

0

∂ϕ

∂s
ds =

∫ 1

0

J(sx, t)xds =

[∫ 1

0

J(sx, t)ds

]
x.

�

Given a square matrix Q ∈ R
n×n , consider its measure [4]

µ|| ||p (Q) = lim
θ↓0

(||I + θQ||p − 1) /θ, (9)

associated with the matrix norm ||Q||p induced by the Hölder p-norm of the vectors in R
n.

Proposition 1. Consider the set Ωp ⊇
⋃

t∈R+

Sp,h(t). Given a positive vector function

h(t) (2) and an arbitrary Hölder p-norm, if ∀t ∈ R+, ∀x ∈ Ωp one of the following two
inequalities is fulfilled:

(a) µ|| ||p

(
H−1(t)A(x, t)H(t)−H−1(t)Ḣ(t)

)
≤ 0, (10a)
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(b) µ|| ||p

(
H−1(t)J(x, t)H(t)−H−1(t)Ḣ(t)

)
≤ 0, (10b)

then system (1) is locally DIp,h(t).

Proof. (a) First we prove the invariance of the TDS Sp,h(t) (4) w.r.t. system (1), by showing
that

D+
t W (x, t) = lim

θ↓0

W (x, t+ θ)−W (x, t)

θ
≤ 0.

Indeed, ∀t ∈ R+, ∀x ∈ Sp,h(t) for the unique trajectory of system (1) initialized in
x(t) = x, we can write

H−1(t+ θ)x(t+ θ) = H−1(t)x(t) + θ
d

dt

(
H−1(t)x(t)

)
+ θO(θ),

with lim
θ↓0
||O(θ)||p = 0 and

d

dt

(
H−1(t)x(t)

)
= M(x, t)

(
H−1(t)x(t)

)
,

where matrix M(x, t) is defined by

M(x, t) = H−1(t)A(x, t)H(t)−H−1(t)Ḣ(t).

Hence,

W (t+ θ) = || (I + θM(x, t))
(
H−1(t)x(t)

)
+ θO(θ)||p ≤ ||I + θM(x, t)||pW (t) + θ||O(θ)||p

and

D+
t W (x, t) ≤ lim

θ↓0

||I + θM(x, t)||p − 1

θ
W (t) + lim

θ↓0
O(θ) = µ|| ||p (M(x, t))W (t).

This means inequality (10a) implies D+
t W (x, t) ≤ 0, i.e. W (x, t) (8) is nonincreasing and

Lemma 1 ensures that Sp,h(t) (4) is FI w.r.t. system (1). Moreover, all the TDSs Sp.h̃(t)

generated by h̃(t) = ρh(t) with ρ ∈ (0, 1] are FI w.r.t. system (1), because Sp,h̃(t) ⊆ Sp,h(t)

and inequality (10a) written for H̃(t) = ρH(t) remains valid, proving that system (1) is
locally DIp,h(t).

(b) Define the matrix

P (x, t) = H−1(t)J(x, t)H(t)−H−1(t)Ḣ(t).

By using Lemma 1, we can show that

µ|| ||p (M(x, t)) ≤
∫ 1

0

µ|| ||p (J(sx, t)) ds

since

µ|| ||p (M(x, t)) = lim
θ↓0

[∥∥∥∥
1

θ
I +

(
H−1(t)

∫ 1

0

J(sx, t)dsH(t)− Ḣ(t)H−1(t)

)∥∥∥∥
p

−1

θ

]
=
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= lim
θ↓0

[∥∥∥∥
∫ 1

0

(
1

θ
I + P (sx, t)

)
ds

∥∥∥∥
p

−
∫ 1

0

1

θ
ds

]
≤ lim

θ↓0

[∫ 1

0

∥∥∥∥
1

θ
I + P (sx, t)

∥∥∥∥
p

ds−
∫ 1

0

1

θ
ds

]
=

= lim
θ↓0

∫ 1

0

[∥∥∥∥
1

θ
I + P (sx, t)

∥∥∥∥
p

− 1

θ

]
ds =

∫ 1

0

µ|| ||p (P (sx, t)) ds.

If inequality (10b) is true, then, ∀t ∈ R+, ∀x ∈ Sp,h(t) we also have µ|| ||p (P (sx, t)) ≤ 0,
∀s ∈ [0, 1], yielding

µ|| ||p (M(x, t)) ≤
∫ 1

0

µ|| ||p (J(sx, t)) ds ≤ 0.

The proof is completed since we use Part (a). �

Remark 2. If one of the inequalities (10a) or (10b) is met for all t ∈ R+ and x ∈ R
n, then

system (1) is globally DIp,h(t).

4. Diagonal Invariance of Linear Systems

Consider the time-invariant linear system

ẋ(t) = Cx(t). (11)

The sufficient conditions for diagonal invariance given in the previous section become neces-
sary and sufficient, as shown below, due to the linearity of system (11). The linear behavior
also emphasizes the global meaning of the flow invariance property:

Lemma 3. Given a positive vector function h(t) (2) and an arbitrary Hölder p-norm, if TDS
Sp,h(t) (4) is FI w.r.t. system (11), then, for any constant ε > 0, the TDS Sp,h̃(t)defined by

h̃(t) = εh(t) is also FI w.r.t. system (11).

Proof. For an arbitrary ε > 0, any trajectory x̃(t) of system (11) initialized in x̃(t0) ∈
Sp,h̃(t0)

can be written as x̃(t) = εx(t), where x(t) is the solution to (11) initialized in

x(t0) = x̃(t0)/ε ∈ Sp,h(t0). The FI property of Sp,h(t) implies x(t) ∈ Sp,h(t), ∀t > t0, which
leads to x̃(t) = εx(t) ∈ Sp,εh(t) = Sp,h̃(t), ∀t > t0. �

Lemma 4. Given a positive vector function h(t) (2) and an arbitrary Hölder p-norm, TDS
Sp,h(t) (4) is FI w.r.t. system (11) if and only if function (6) is nonincreasing along each
trajectory of system (11).

Proof. Sufficiency: It is ensured by Lemma 1. Necessity: Given arbitrary t0 ∈ R+ and
x0 ∈ Sp,h(t0), by using Lemma 3 for the trajectory x(t) = x(t; t0, x0) of (11) with ε =
||H−1(t0)x0||p we get ||(εH(t))−1x(t)||p ≤ 1, or, equivalently,

||H−1(t)x(t)||p ≤ ε = ||H−1(t0)x(t0)||p

for any t > t0. The proof is completed, since t0 and x0 are arbitrary. �
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Proposition 2. Given a positive vector function h(t) (2) and an arbitrary Hölder p-norm,
the linear system (11) is DIp,h(t) if and only if ∀t ∈ R+ the following inequality is fulfilled:

µ|| ||p

(
H−1(t)C(H(t)−H−1(t)Ḣ(t)

)
≤ 0. (12)

Proof. Sufficiency: It is ensured by Proposition 1 with A(x, t) = J(x, t) = C. Necessity:
By using the notation M(t) = H−1(t)CH(t)−H−1(t)Ḣ(t), according to the Proof of Pro-
position 1, for arbitrary t ∈ R+, θ ∈ R+, we can write

H−1(t+ θ)x(t+ θ) = H−1(t)x(t) + θM(t)
(
H−1(t)x(t)

)
+ θO(θ)

with lim
θ↓0
||O(θ)||p = 0. On the other hand, the following inequalities hold true:

µ|| ||p (M(t)) = lim
θ↓0

sup
||H−1(t)x(t)||p=1

||(I + θM(t))H−1(t)x(t)||p − 1

θ
=

= lim
θ↓0

[
1

θ
sup

||H−1(t)x(t)||p=1

(
||H−1(t)x(t) + θM(t)H−1(t)x(t)||p

)
− 1

θ

]
=

= lim
θ↓0

[
1

θ
sup

||H−1(t)x(t)||p=1

(
||H−1(t+ θ)x(t+ θ)− θO(θ)||p

)
− 1

θ

]
≤

= lim
θ↓0

[
1

θ
sup

||H−1(t)x(t)||p=1

(
||H−1(t+ θ)x(t + θ)||p + θ||O(θ)||p

)
− 1

θ

]
≤

≤ lim
θ↓0

(
1

θ
+ ||O(θ)||p −

1

θ

)
= 0

since
||H−1(t+ θ)x(t+ θ)||p ≤ ||H−1(t)x(t)||p = 1,

according to Lemma 4. �

Remark 3. The concrete expression of the matrix measure used in inequality (12) allows
deriving particular forms for the DIp,h(t) condition relative to different Hölder p-norms, as
follows.

For the Hölder norm p = ∞, inequality (12) is equivalent to the following n differential
inequalities

DI∞,h(t) : ciihi(t) +

n∑

j=1,j 6=i

|cii|hj(t) ≤ ḣi(t), i = 1, . . . , n. (13)

Actually, the DI∞,h(t) condition (13) was obtained in [15] directly from the subtangency
condition (see, e.g [14]) applied to time-dependent, symmetrical rectangular sets.

For the Hölder norm p = 1, the approach is mutatis mutandis similar to the one for the
Hölder norm p =∞.
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For the Hölder norm p = 2, inequality (12) is equivalent to the matrix differential in-
equality

DI2,h(t) : CTH−2(t) +H−2(t)C +
d

dt

(
H−2(t)

)
≤ 0, (14)

written in the sense of semidefinite negativeness. In connection with Remark 1, note that a
solution H−1(t) to (14) does not necessarily define a weak Lyapunov function for the linear
system (11) when it is replaced in W (x, t) defined by (6). �

5. A Comparison Theorem for Diagonal Invariance

Proposition 1 is not easy to handle as a practical instrument for systems of higher dimen-
sion and, therefore, some results with a larger applicability, handling simplified sufficient
conditions, are presented in the sequel. The purpose is to avoid the usage of the matrices
A(x, t), J(x, t) appearing in inequalities (10a), (10b), by operating with constant matrices
that majorize A(x, t), J(x, t).

Given a square matrix Q = (qij), i, j = 1, . . . , n, denote by Q = (q̄ij), i, j = 1, . . . , n, a
majorant of Q, built as an essentially nonnegative matrix, i.e. a matrix with nonnegative
off-diagonal elements [1]:

q̄ii = qii, i = 1, . . . , n;

q̄ij = |qij |, i 6= j, i, j = 1, . . . , n.
(15)

Theorem 1. Given a positive vector function h(t) (2) and an arbitrary Hölder p-norm,
consider the set Ωp ⊇

⋃
t∈R+

Sp,h(t). Assume that one of the following two conditions is

satisfied,

(a) ∀t ∈ R+, ∀x ∈ Ωp : A(x, t) ≤ C, (16a)

(b) ∀t ∈ R+, ∀x ∈ Ωp : J(x, t) ≤ C. (16b)

If the linear system (11) is DIp,h(t), then the time-variant nonlinear system (1) is DIp,h(t).

In order to prove Theorem 1, let us give a technical result referring to essentially non-
negative matrices.

Lemma 5. Consider a square matrix Q = (qij), i, j = 1, . . . , n, its majorant Q = (q̄ij),
i, j = 1, . . . , n, built according to (15), and an essentially nonnegative matrix P that sat-
isfies the componentwise matrix inequality Q̄ ≤ P . For any Hölder p-norm, the following
inequalities hold:

µ|| ||p(Q) ≤ µ|| ||p(Q̄) ≤ µ|| ||p(P ). (17)

Proof. It results from the definition of the matrix measures and the monotonicity of the
matrix norms induced by Hölder vector norms.

(i) First let us show that if M and N are two nonnegative n × n matrices satisfying
M ≤ N , then ||M ||p ≤ ||N ||p. Indeed, due to the continuity of the function ||My||p for y in
the closed hyper-ball Bp,1 = {y ∈ R

n| ||y||p = 1} there exists y∗ ∈ Bp,1, y
∗ ≥ 0, so that

||M ||p = sup
y∈Bp,1

||My||p = ||My∗||p ≤ ||Ny∗||p ≤ ||N ||p||y∗||p = ||N ||p.
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(ii) Next, in order to prove the second inequality in (17), for the given matrix Q let us

consider θ > 0 sufficiently small, so that matrix
1

θ
I + Q̄ is nonnegative (e.g. θ < θ∗ with

1/θ∗ > qii, i = 1, . . . , n). If matrix P satisfies Q̄ ≤ P , then, according to part (i) of the

proof,
∥∥∥
1

θ
I + Q̄

∥∥∥
p
≤

∥∥∥
1

θ
I + P

∥∥∥
p
, leading to

µ|| ||p
(
Q̄
)
= lim

θ↓0

[∥∥∥∥
1

θ
I + Q̄

∥∥∥∥
p

− 1

θ

]
≤ lim

θ↓0

[∥∥∥∥
1

θ
I + P

∥∥∥∥
p

− 1

θ

]
= µ|| ||p (P ) .

(iii) The first inequality in (17) results in a similar manner, taking into account that for

θ > 0 sufficiently small, matrix
1

θ
I + Q̄ is nonnegative and there exists y∗ ∈ Bp,1 so that the

following relation holds:
∥∥∥∥
1

θ
I +Q

∥∥∥∥
p

=

∥∥∥∥
(
1

θ
I +Q

)
y∗

∥∥∥∥
p

=

∥∥∥∥
(
1

θ
I + Q̄

)
|y∗|

∥∥∥∥
p

≤
∥∥∥∥
(
1

θ
I + Q̄

)∥∥∥∥
p

,

leading to µ|| ||p(Q) ≤ µ|| ||p(Q̄). �

Proof of Theorem 1. If system (11) is DIp,h(t), then Proposition 2 ensures the fulfillment
of (12).

(a) If condition (16a) is valid, then the following componentwise matrix inequality holds
true

H−1(t)A(x, t)H(t)−H−1(t) Ḣ(t) ≤ H−1(t)C H(t)−H−1(t) Ḣ(t)

and Lemma 5 ensures that (12) implies (10a). Then apply Proposition 1(a) to show that
system (1) is DIp,h(t).

(b) Similarly, if condition (16b) is valid, then

H−1(t) J(x, t)H(t)−H−1(t) Ḣ(t) ≤ H−1(t)C H(t)−H−1(t)Ḣ(t)

and Lemma 5 ensures that (12) implies (10a). Then apply Proposition 1(b) to show that
system (1) is DIp,h(t). �

Remark 4. The proof of Theorem 1 shows that the practical usage of the comparison
method requires testing the fulfillment of inequality (12) for the linear system (11).

6. An Illustrative Example

Consider the nonlinear system

ẋ(t) = Bx(t) +Wg(x(t)), (18)

where B = diag{b1, . . . , bn}, bi < 0, i = 1, . . . , n, W ∈ R
n×n.

The function g(x) = [g1(x) · · · gn(x)]T : Rn → R
n is continuously differentiable on R

n

and fulfills gi(x) = gi(xi), gi(0) = 0 and 0 ≤ g′i(r) ≤ Li, ∀r ∈ R, i = 1, . . . , n.
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This type of systems characterizes the dynamics of recurrent neural networks without
delay, described with respect to the EP {0}.

Define the matrix
Π = B + W̃Λ, (19)

where the elements of W̃ = [w̃ij ] ∈ Rn×n are given by w̃ii = max{0, wii}, i = 1, . . . , n,
w̃ij = |wij |, i 6= j, i, j = 1, . . . , n, and Λ = diag{Li, · · · , Ln}.
Corollary 1. Given a positive vector function h(t) (2) and an arbitrary Hölder p-norm, if
the linear system

ẋ(t) = Πx(t), (20)

defined with matrix Π (19), is globally DIp,h(t), then the nonlinear system (18) is globally
DIp,h(t).
Proof. Take into account that, the Jacobian matrix of the function f : Rn → R

n , f(x) =
Bx+Wg(x) , fulfills

J(x) = B +Wdiag{g′1(x1), · · · , g′n(xn)} ≤ B + W̃Λ = Π

for all x ∈ R
n and apply Theorem 1(b) with C = Π. �

The practical usage of Corollary 1 means testing the fulfillment of inequality (12) with
C = Π, in accordance with Remark 4. In the particular case of the Hölder norm with p =∞,
(12) is equivalent with the differential inequality

ḣ(t) ≥ Πh(t), (21)

condition previously obtained in [10] by applying the subtangency theory presented in [14].
The following numerical example, adapted from [10], refers to the nonlinear system

described by (18) with B = diag {5, 7}, W =

[
−5 −1
−1 −3.5

]
, g1(x1) = tansig(x1) and g2(x2) =

tansig(2x2). The numerical value of matrix Π constructed according to (19) with Λ =

diag {1, 2} is Π =

[
−5 2
1 −7

]
.

Consider the vector function h : R+ → R
2, h(t) = eσtd, defined with σ the importance

eigenvalue of Π [6], σ = λmax(Π) = −6 +
√
3 < 0, and d its corresponding eigenvector

satisfying ||d||∞ = 1, d =
[
1

(√
3− 1

)
/2

]T
(which is positive). Since h(t) satisfies relation

(21) as an equality, the considered nonlinear system is globally DI∞,h(t).
Figure 1 depicts the symmetrical TDS S∞,h(t) (solid lines), as well as the four state-

trajectories (marked lines) initialized at t0 = 0 in the vertices of S∞,h(0). Obviously, all the
state-trajectories initialized in S∞,h(0) remain inside S∞,h(t), t ≥ 0.

7. Conclusions

The framework we have developed for the analysis of flow invariance covers a large class of
dynamical systems and allows considering invariant sets depending on time. The results pre-
sented by this paper operate as sufficient conditions in the general case of time-variant non-
linear systems, but, for linear systems, they provide necessary and sufficient conditions. The
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(a) (b) (c)
Fig. 1. Plots corresponding to four state-trajectories of the nonlinear system:

(a) 2D visualization for state variable x1 versus time;
(b) 2D visualization for state variable x2 versus time;

(c) 3D visualization.

approach to nonlinear systems is built as a comparison theorem whose practical tractability
is ensured by the convenient handling of the DIp,h(t) characterization for the linear com-
parison system. Our framework creates a unified point of view on DIp,h(t) testing, which is
able to accommodate results of previous works as particular cases. The adaptation of this
framework to discrete-time dynamics is a straightforward task.
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