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Abstract. Soldered forms, multivector fields and Riemannian metrics were
studied in our earlier paper [2]. In particular, it was shown that a Riemannian
submanifold is totally geodesic iff the metric is soldered to the submanifold. In
the present paper, we discuss general, soldered tensor fields. In particular, we
prove that the almost complex structure of an almost Kähler manifold is soldered
to a submanifold iff the latter is an invariant, totally geodesic submanifold.
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1 Introduction

In the present paper, all the manifolds, mappings, bundles, tensor fields, etc. are differen-
tiable of class C∞ and we use the standard notation of Differential Geometry, including the
Einstein summation convention. The reader may consult [1] for all the differential geometric
notion and results that are used in the paper.

If Nn is a submanifold of Mm (indices denote dimension), then a normalization of N by
a normal bundle νN is a splitting

TM |N = TN ⊕ νN (1.1)

(T denotes tangent bundles). A submanifold endowed with a normalization is called a
normalized submanifold and a vector field X onM is tangent or normal to N if X|N belongs
to TN, νN , respectively. The best known case is that of a Riemannian normalization νN =
T⊥gN , where g is a Riemannian metric on M . In fact, given an arbitrary normalization,
it is easy to construct metrics g such that the normalization is g-Riemannian. Similarly, if
N is a symplectic submanifold of a symplectic manifold (M,ω), νN = T⊥ωN defines the
symplectic normalization. Another interesting example is that of a submanifold N such that,
∀x ∈ N , TxM = TxN ⊕ TxF , where F is a foliation of M ; then we may take νN = TF|N .

In our earlier paper [2] we discussed differential forms, multivector fields and Riemannian
metrics that have a special kind of contact with a normalized submanifold; these were said to
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be soldered to the submanifold. In particular, it was shown that a Riemannian submanifold
is totally geodesic iff the metric is soldered to the submanifold and that a submanifold of a
Poisson manifold is a (totally) Dirac submanifold iff there exists a normalization such that
the Poisson bivector field is soldered to the submanifold with respect to this normalization.

In the present paper we give a general definition for the notion of soldering of an arbitrary
tensor field and we consider an obstruction to soldering, which, essentially, is a generalization
of the second fundamental form of a Riemannian submanifold. We establish some formulas
for the calculation of this obstruction and get corresponding applications. In particular, we
prove that the almost complex structure J of an almost Kähler manifold is soldered to a
submanifold iff the latter is a J-invariant, totally geodesic submanifold.

2 Soldered tensor fields

Let (Nn, νN) be a normalized submanifold of Mm and let ι : N ⊆M be the corresponding
embedding.

First, we exhibit some adequate, local coordinates around the points of N . Let σ :W →
N be a tubular neighborhood of N such that ∀x ∈ N , Tx(Wx) = νxN (Wx is the fiber of
W and νxN is the fiber of νN at x). For every point x ∈ N there exists a σ-trivializing
neighborhood U with coordinates (xa) (a, b, c, ... = 1, ...,m − n) around x on the fibers of
σ, such that xa|N∩U = 0, and coordinates (yu) (u, v, w, ... = m− n+ 1, ...,m) around x on
N ∩ U . We say that (xa, yu) are adapted local coordinates.

Then,

TN |N∩U = span

{

∂

∂yu

∣

∣

∣

∣

xa=0

}

, νN |N∩U = span

{

∂

∂xa

∣

∣

∣

∣

xa=0

}

(2.1)

and the transition functions between systems of adapted local coordinates have the local
form

x̃a = x̃a(xb, yv), ỹu = ỹu(yv), (2.2)

where
∂x̃a

∂yv

∣

∣

∣

∣

xb=0

= 0,
∂ỹu

∂xb
≡ 0. (2.3)

Furthermore, (1.1) implies
T ∗M |N = T ∗N ⊕ ν∗N, (2.4)

and
T ∗N = ann(νN) = span{dyu|xa=0},

ν∗N = ann(TN) = span{dxa|xa=0}
(2.5)

(ann denotes annihilator spaces).
Now we give the following general definition.

Definition 2.1. A tensor field A ∈ T p
q (M) (where T denotes a space of tensor fields) is

soldered to the normalized submanifold (N, νN) if for any normal vector field X ∈ ΓTM of
N one has

(LXA)x(Y1, ..., Yq, ξ1, ..., ξp) = 0, (2.6)

for any x ∈ N and any arguments Y1, ..., Yq ∈ TxN, ξ1, ..., ξp ∈ ann νxN .
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In (2.6) L denotes the Lie derivative and it turns out that (2.6) is a combination of
algebraic and differential conditions. Indeed, we have

Proposition 2.1. If the tensor field A ∈ T p
q (M) is soldered to the normalized submanifold

(N, νN), then, for any fixed vectors Y1, ..., Yq ∈ TxN and covectors ξ1, ..., ξp ∈ ann νxN , the
following algebraic conditions must hold:

1) the 1-forms αi ∈ T ∗M |N , i = 1, ..., q, defined by

αi(V ) = A|N (Y1, ..., Yi−1, V, Yi+1, ..., Yq, ξ1, ..., ξp), V ∈ TM |N , (2.7)

belong to ann νN ;

2) the vector fields Zj ∈ TM |N , j = 1, , , , p, defined by

Zj(γ) = A|N (Y1, ...Yq, ξ1, ..., , ξj−1, γ, ξj+1, ..., ξp), γ ∈ T ∗M |N , (2.8)

are tangent to N .

Proof. Consider the general formula

(LϕV A)(Y1, ..., Yq, ξ1, ..., ξp) = ϕ(LV A)(Y1, ..., Yq, ξ1, ..., ξp) (2.9)

−

q
∑

i=1

(Yiϕ)αi(V )−

p
∑

j=1

ξj(V )(Zjϕ),

where αi(V ) and Zjϕ = dϕ(Zj) are defined by (2.7), (2.8), respectively; the formula holds
for arbitrary arguments (not necessarily related to N) and for any function ϕ ∈ C∞(M).
Conditions 1), 2), follow from (2.9) by taking V = fX + lY where l|N = 0; this vector field
is normal to N again, therefore, it also satisfies (2.6).

Proposition 2.2. The tensor field A ∈ T p
q (M) is soldered to the normalized submanifold

N iff the local components of A with respect to adapted coordinates satisfy the conditions

Av1,...,vp
u1,...,ui−1,a,ui+1,...,uq

(0, yw) = 0, Av1,...,vj−1,a,vj+1,...,vp
u1,...,uq

(0, yw) = 0 (2.10)

and
∂A

v1,...,vp
u1,...,uq

∂xa

∣

∣

∣

∣

xb=0

= 0. (2.11)

Proof. Using the bases (2.1), (2.5), we see that conditions 1), 2) of Proposition 2.1 are
equivalent to (2.10) and (2.11) is (2.6) expressed for X = ∂/∂xa. Conversely, using formula
(2.9), it is easy to derive (2.6) from (2.11) and the algebraic conditions 1), 2).

In the case of either a differential form or a multivector field formulas (2.10), (2.11)
reduce to the conditions for soldering forms and multivector fields given in [2].
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Example 2.1. Assume that there exists a foliation F of M such that νN = TF|N is a
normalization of N . A tensor field A ∈ T p

q (M) is said to be projectable or foliated if for any
local quotient manifold QU = U/F∩U (U is an open neighborhood inM where F is simple)
there exists a tensor field A′ ∈ T p

q (QU ) that is π-related to A (π is the natural projection
U → QU ). Let (y

u, xa) be local coordinates such that the local equations of the leaves are
yu = const. (In particular, around points x ∈ N we may use N -adapted local coordinates.)
Then, it is easy to see that A is projectable iff it has a local expression of the following form

A = dyu1 ⊗ ...⊗ dyuq ⊗ [Av1...vp
u1...uq

(y)
∂

∂yv1
⊗ ...⊗

∂

∂yvp
(2.12)

+Aa1v2...vp
u1...uq

(x, y)
∂

∂xa1
⊗

∂

∂yv2
...⊗

∂

∂yvp
+ ...+Aa1a2...ap

u1...uq
(x, y)

∂

∂xa1
...⊗

∂

∂xap
].

Formula (2.12) shows that the projectable tensor fields are characterized by the following
global properties:

(i) A ∈ [⊗q(annT ∗F)]⊗ [⊗pTM ],
(ii) ∀X ∈ TF one has LXA ∈ TF ⊗ [⊗q(annT ∗F)]⊗ [⊗p−1TM ].

Accordingly, we see that an F-projectable tensor field A is soldered to the submanifold N iff
the algebraic condition 2) of Proposition 2.1 is satisfied. In particular, a totally covariant,
foliated tensor field necessarily is soldered to any local transversal submanifold Nn of the
foliation Fm−n.

Definition 2.2. A tensor field A ∈ T p
q (M) that satisfies the algebraic conditions 1), 2) of

Proposition 2.1 (equivalently, satisfies (2.10)) will be called algebraically adapted to N .

Proposition 2.3. If A ∈ T p
q (M) is algebraically adapted to N , the morphism wA : νN →

T p
q (N) defined by

wA(X̄)(Y1, ..., Yq, ξ1, ..., ξp) = LXA(Y1, ..., Yq, ξ1, ..., ξp)|N , (2.13)

where Y1, ..., Yq ∈ ΓTN , ξ1, ..., ξp ∈ Γ(ann νN), X̄ ∈ ΓνN and X is a vector field on M
with the restriction X̄ to N , is independent of the choice of the extension X of X̄.

Proof. Since A is algebraically N -adapted, formula (2.9) yields

(LfX+lZA)(Y1, ..., Yq, ξ1, ..., ξp)|N = f(LXA)(Y1, ..., Yq, ξ1, ..., ξp)|N , (2.14)

for any functions f, l ∈ C∞(M) such that l|N = 0, any vector field X normal to N and
any vector field Z on M . The case Z = 0 shows that wA is C∞(N)-linear in X̄. The
case f = 1 shows that wA(X̄) is independent of the choice of the extension X of X̄, since,
using coordinate expressions, it easily follows that two extensions X1, X2 are related by an
equality of the form X2 = X1 +

∑

lkZk where the functions lk vanish on N .

Definition 2.3. The morphism wA will be called the soldering obstruction of the alge-
braically N -adapted tensor field A.

The name is motivated by the fact that if wA = 0 then A is soldered to N . Notice that
wA(X̄) has the same symmetries like A.
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3 Applications

In this section we consider only Riemannian normalizations, therefore, M is endowed with a
Riemannian metric g and νN = T⊥gN . All the vector fields denoted by Y are tangent to N
and all the vector fields denoted by X are normal to N . The reader is asked to pay attention
to the situations where calculations take place only along N . In [2], as a consequence of the
Gauss-Weingarten formulas [1], we proved that the soldering obstruction of the metric g is

wg(X̄)(Y1, Y2) = (LXg)(Y1, Y2)|N = −2g(β(Y1, Y2), X̄) (3.1)

where X|N = X̄ ∈ ΓνN and β is the second fundamental form of N . Accordingly, the
metric is soldered to a submanifold N iff N is a totally geodesic submanifold of M .

For more applications we compute the soldering obstruction of a tensor field A of type
(1, 1). From (2.10) it follows that A is algebraically adapted to (N, νN) iff both TN and
νN are invariant by the endomorphism A and we shall assume that this condition holds.
Together with the soldering invariant of A we define the bilinear soldering form σA(Y1, Y2) ∈
νN given by

g(σA(Y1, Y2), X̄) = wA(X̄)(Y1, ♭gY2). (3.2)

Of course, A is soldered to (N,T⊥gN) iff σA = 0.

Proposition 3.1. Assume that the operator A is either symmetric or skew-symmetric with
respect to g. Then, σA is symmetric, respectively, skew-symmetric iff A is symmetric, re-
spectively, skew-symmetric with respect to the second fundamental form β of the submanifold
N of (M, g).

Proof. The assumed symmetry property is

g(AV1, V2) = ±g(V1, AV2), ∀V1, V2 ∈ ΓTM. (3.3)

If we take the Lie derivative LX of this equality, modulo the equality itself, and use (3.1),
we get

g(σA(Y1, Y2)∓ σA(Y2, Y1), X̄) = 2g(β(AY1, Y2)∓ β(Y1, AY2), X̄),

whence the conclusion.

The following proposition expresses the soldering form of a g-(skew)-symmetric (1, 1)-
tensor field A in terms of the Levi-Civita connection ∇ of g and the second fundamental
form β of the submanifold N .

Proposition 3.2. Assume that the algebraically N -adapted tensor field A ∈ T 1
1 (M) satisfies

(3.3). Then, the following formula, where the sign in the right hand side is opposite to the
sign in (3.3), holds:

g(σA(Y1, Y2), X̄) = g(∇X̄A(Y1), Y2)

+g(β(AY1, Y2)∓ β(Y1, AY2), X̄).
(3.4)
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Proof. We prove the equality at every fixed point x ∈ N . During the calculations, we extend
the vectors Y1(x), Y2(x), X̄(x) to vector fields Ỹ1, Ỹ2, X on M that are tangent, respectively,
normal to N . Since the final result is independent of the choice of the extension, we may
use local, adapted coordinates and take

Ỹ1 = µu
1

∂

∂yu
, Ỹ2 = µu

2

∂

∂yu
, X = ξa

∂

∂xa
, (3.5)

where µu
1 , µ

u
2 , ξ

a are constant (namely, the components of Y1(x), Y2(x), X̄(x) at the fixed
point x). From the equality

LX(AỸ1) = [X,AỸ1] = ∇X(AỸ1)−∇AỸ1
X,

we get
[(LXA)(Y1)]x = [A∇X Ỹ1 −∇AY1

X + (∇XA)(Y1)]x.

In this result we may replace∇AxY1(x)X = −WX̄(x)Ỹ1+DY1(x)X, whereW is the Weingarten
operator of N and D is the connection induced by ∇ in νN . Then, using also (3.3), we get

[g(σA(Y1, Y2), X̄)]x = [g(β(AY1, Y2), X̄)± g(∇X̄ Ỹ1, AY2) + g((∇X̄A)(Y1), Y2)]x.

But, ∇X̄ Ỹ1 = ∇Y1
X + [X, Ỹ1], and the last bracket vanishes for the chosen extensions (3.5).

Accordingly,

[g(∇X̄ Ỹ1, AY2)]x = [g(∇Y1
X,AY2) = g(−WX̄Y1 +DY1

X,AY2)]x

= −[g(βx(Y1, AY2), X)]x

and (3.4) follows.

Corollary 3.1. Assume that A is parallel with respect to the Levi-Civita connection of g.
Then, if A is g-symmetric σA = 0 and if A is g-skew-symmetric σA(Y1, Y2) = 2β(AY1, Y2),
where β is the Riemannian, second fundamental form of N in M .

Proof. The Gauss equation

∇Y1
(AỸ2) = ∇

′

Y1
(AY2) + β(AY1, Y2),

where ∇′ is the induced Levi-Civita connection on N , implies that, if ∇A = 0, then
β(AY1, Y2) = Aβ(Y1, Y2). Similarly, β(Y1, AY2) = Aβ(Y1, Y2). Inserting ∇A = 0 and
the previous results for β in (3.4) we get the announced results.

Another nice formula is given by

Proposition 3.3. Let A be either a g-symmetric or a g-skew-symmetric (1, 1)-tensor field
on (M, g) that is algebraically adapted to the submanifold N and let NA be its Nijenhuis
tensor. Then, one has

g(σA(Y1, Y2), AX̄) = ±g(σA(Y1, AY2), X̄) + g(NA(X,Y1), Y2). (3.6)
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Proof. With the notation in the proof of Proposition 3.2, if x ∈ N ⊆ M , one has the
following expression of the Nijenhuis tensor

[(NA)(X, Ỹ1)]x = [(LAXA)(Ỹ1)−A(LXA)(Ỹ1)]x. (3.7)

The required result follows by taking the g-scalar product of the previous equality by Y2.

For a concrete application, let (M,J, g) be an almost Hermitian manifold, which means
that the almost complex structure J is g-skew-symmetric. The tensor field J is alge-
braically adapted to the submanifold N iff N is J-invariant, which we shall assume here-
after. If (M,J, g) is a Kähler manifold and N is a complex submanifold, Corollary 3.2 gives
σJ(Y1, Y2) = 2β(JY1, Y2) and we see that J is soldered to (N,T⊥gN) iff N is a totally
geodesic submanifold.

We shall extend this result to almost Kähler manifolds. For any almost Hermitian
manifold (M,J, g) one has the Kähler form Ω(Y1, Y2) = g(JY1, Y2).

Proposition 3.4. The soldering form of the almost complex structure J is related to the
Kähler form Ω by means of the formula

g(σJ(Y1, Y2), X̄) = 2g(β(JY1, Y2), X̄) + dΩ(X̄, Y1, Y2). (3.8)

Proof. From the definition of Ω we get

(LXΩ)(Y1, Y2) = (LXg)(JY1, Y2) + g(LXJ(Y1), Y2),

which, for X̄ ∈ νN for Y1, Y2 ∈ TN becomes

g(σJ(Y1, Y2), X̄) = (LXΩ)(Y1, Y2)− g(σg(JY1, Y2), X̄). (3.9)

Notice that Ω is algebraically compatible with (N,T⊥g ), therefore,

(LXΩ)(Y1, Y2) = g(σΩ(Y1, Y2), X̄).

Since it is easy to check that for the involved arguments one has (di(X)Ω)(Y1, Y2) = 0, by
using LX = di(X) + i(X)d in (3.9), we get

g(σJ(Y1, Y2), X̄) = dΩ(X̄, Y1, Y2)− g(σg(JY1, Y2), X̄). (3.10)

In view of (3.1), formula (3.10) is the same as the one required by the proposition.

Corollary 3.2. The almost complex structure J is soldered to the J-invariant submanifold
N iff the second fundamental form of N is given by the formula

g(β(JY1, Y2), X) = −
1

2
dΩ(X,Y1, Y2). (3.11)

Then, since an almost Kähler manifold is characterized by the property dΩ = 0, we get
the main application:

Proposition 3.5. If (M,J, g) is an almost Kähler manifold, the almost complex structure
J is soldered to the submanifold N iff N is a J-invariant, totally geodesic submanifold of M .
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