L_p -Width-Integrals and Affine Surface Areas

Chang-jian ZHAO and Mihály BENCZE

Abstract. The main purposes of this paper are to establish some new Brunn-Minkowski inequalities for L_p -width-integrals of mixed projection bodies and L_p -affine surface area of mixed bodies.

Keywords: L_p -width-integrals, L_p -affine surface area, mixed projection body, mixed body.

Mathematics Subject Classification (2000): 52A40, 53A15, 46B20.

§1. Introduction

In recent years some authors including Ball^[1], Bourgain^[2], Gardner^[3], Schneider^[4] and Lutwak^[5-10] et al have given considerable attention to the Brunn-Minkowski theory and Brunn-Minkowski-Firey theory and their various generalizations. In particular, Lutwak^[7] had generalized the Brunn-Minkowski inequality (1) to mixed projection body and get inequality (2):

The Brunn-Minkowski inequality If $K, L \in \mathcal{K}^n$, then

$$V(K+L)^{1/n} \ge V(K)^{1/n} + V(L)^{1/n},\tag{1}$$

with equality if and only if K and L are homothetic.

The Brunn-Minkowski inequality for mixed projection bodies If $K, L \in \mathcal{K}^n$, then

$$V(\Pi(K+L))^{1/n(n-1)} \ge V(\Pi K)^{1/n(n-1)} + V(\Pi L)^{1/n(n-1)},\tag{2}$$

with equality if and only if K and L are homothetic.

On the other hand, width-integral of convex bodies and affine surface areas play an important role in the Brunn-Minkowski theory. Width-integrals were first considered by Blaschke^[11] and later by Hadwiger^[12]. In addition, Lutwak had established the following results for the width-integrals of convex bodies and affine surface areas.

Supported by National Natural Sciences Foundation of China (10971205).

The Brunn-Minkowski inequality for width-integrals of convex $bodies^{[10]}$

If $K, L \in \mathcal{K}^n$, i < n-1

$$B_i(K+L)^{1/(n-i)} \le B_i(K)^{1/(n-i)} + B_i(L)^{1/(n-i)}$$
(3)

with equality if and only if K and L have similar width.

The Brunn-Minkowski inequality for affine surface area^[9]

If $K, L \in \kappa^n$, and $i \in \mathbb{R}$, then for i < -1

$$\Omega_i(K\tilde{+}L)^{(n+1)/(n-i)} \le \Omega_i(K)^{(n+1)/(n-i)} + \Omega_i(L)^{(n+1)/(n-i)}$$
(4)

with equality if and only if K and L are homothetic, while for i > -1

$$\Omega_i(K\tilde{+}L)^{(n+1)/(n-i)} \ge \Omega_i(K)^{(n+1)/(n-i)} + \Omega_i(L)^{(n+1)/(n-i)}$$
 (5)

with equality if and only if K and L are homothetic.

In this paper, we firstly generalize inequality (3) to the L_p -width-integrals of mixed projection bodies and get the following result.

Result A If $K_1, K_2, \dots, K_n \in \mathcal{K}^n$, and $C = (K_3, \dots, K_n)$, then for p > 1, i < n - 1

$$B_{p,i}(\Pi(C, K_1 + K_2))^{1/(n-i)} \le B_{p,i}(\Pi(C, K_1))^{1/(n-i)} + B_{p,i}(\Pi(C, K_2)^{1/(n-i)}, (6))$$

with equality if and only if $\Pi(C, K_1)$ and $\Pi(C, K_2)$ are homothetic.

Secondly, we prove that analogs of inequalities (4)-(5) for L_p -affine surface area of mixed bodies.

Result B If $K_1, K_2, ..., K_n \in \mathcal{K}^n$ and all of mixed bodies of $K_1, K_2, ..., K_n$ have positive continuous curvature functions, then for $p \ge 1$

$$\Omega_p([K_1+K_2,K_3,\ldots,K_n])^{(n+p)/n}$$

$$\geq \Omega_p([K_1, K_3, K_4 \dots, K_n])^{(n+p)/n} + \Omega_p([K_2, K_3, \dots, K_n])^{(n+p)/n}$$
 (7)

with equality if and only if $[K_1, K_3, K_4, \ldots, K_n]$ and $[K_2, K_3, \ldots, K_n]$ are homothetic.

Please see the next section for above interrelated notations, definitions and their background materials.

§2. Notations and Preliminary works

The setting for this paper is n-dimensional Euclidean space $\mathbb{R}^n (n > 2)$. Let \mathbb{C}^n denote the set of non-empty convex figures (compact, convex subsets) and \mathcal{K}^n denote the subset of \mathbb{C}^n consisting of all convex bodies (compact, convex subsets with non-empty interiors) in \mathbb{R}^n , and if $p \in \mathcal{K}^n$, let \mathcal{K}^n_p denote the subset of \mathcal{K}^n that contains the centered (centrally symmetric with respect to p) bodies. We reserve the letter p for unit vectors, and the letter p is reserved for the unit ball centered at the origin. The surface of p is p is p is p in the surface of p in the surface of p is p in the surface of p in the surface of p in the surface of p is p in the surface of p in the surface of p in the surface of p is p in the surface of p in

2.1 Mixed volumes

We use V(K) for the *n*-dimensional volume of convex body K. Let $h(K, \cdot)$: $S^{n-1} \to \mathbb{R}$, denote the support function of $K \in \mathcal{K}^n$; i.e.

$$h(K, u) = Max\{u \cdot x : x \in K\}, u \in S^{n-1},$$
 (8)

where $u \cdot x$ denotes the usual inner product u and x in \mathbb{R}^n .

Let δ denote the Hausdorff metric on \mathcal{K}^n ; i.e., for $K, L \in \mathcal{K}^n$,

$$\delta(K,L) = |h_K - h_L|_{\infty}$$

where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions, $C(S^{n-1})$. For a convex body K and a nonnegative scalar $\lambda, \lambda K$, is used to denote $\{\lambda x: x \in K\}$. For $K_i \in \mathcal{K}^n, \lambda_i \geq 0, (i=1,2,\ldots,r)$, the Minkowski linear combination $\sum_{i=1}^r \lambda_i K_i \in \mathcal{K}^n$ is defined by

$$\lambda_1 K_1 + \dots + \lambda_r K_r = \{\lambda_1 x_1 + \dots + \lambda_r x_r \in K^n : x_i \in K_i\}. \tag{9}$$

It is trivial to verify that

$$h(\lambda_1 K_1 + \dots + \lambda_r K_r, \cdot) = \lambda_1 h(K_1, \cdot) + \dots + \lambda_r h(K_r, \cdot). \tag{10}$$

If $K_i \in \mathcal{K}^n (i = 1, 2, ..., r)$ and $\lambda_i (i = 1, 2, ..., r)$ are nonnegative real numbers, then of fundamental impotence is the fact that the volume of $\sum_{i=1}^r \lambda_i K_i$ is a homogeneous polynomial in λ_i given by [4]

$$V(\lambda_1 K_1 + \dots + \lambda_r K_r) = \sum_{i_1, \dots, i_n} \lambda_{i_1} \cdots \lambda_{i_n} V_{i_1 \dots i_n}, \tag{11}$$

where the sum is taken over all n-tuples (i_1, \ldots, i_n) of positive integers not exceeding r. The coefficient $V_{i_1...i_n}$ depends only on the bodies K_{i_1}, \ldots, K_{i_n} , and is uniquely determined by (11), it is called the mixed volume of K_{i_1}, \ldots, K_{i_n} , and is written as $V(K_{i_1}, \ldots, K_{i_n})$. Let $K_1 = \cdots = K_{n-i} = K$ and $K_{n-i+1} = \cdots = K_n = L$, then the mixed volume $V(K_1 \ldots K_n)$ is usually written $V_i(K, L)$. If L = B, then $V_i(K, B)$ is the ith projection measure(Quermassintegral) of K and is written as $W_i(K)$. With this notation, $W_0 = V(K)$, while $nW_1(K)$ is the surface area of K, S(K).

2.2 L_p -Width-integrals of convex bodies

For $u \in S^{n-1}$, b(K, u) is defined to be half the width of K in the direction u. Two convex bodies K and L are said to have similar width if there exists a constant $\lambda > 0$ such that $b(K, u) = \lambda b(L, u)$ for all $u \in S^{n-1}$. For $K \in \mathcal{K}^n$ and $p \in int K$, we use K^p to denote the polar reciprocal of K with respect to the unit sphere centered at p. The width-integral of index i is defined by Lutwak^[10]: For $K \in \mathcal{K}^n$, $i \in \mathbb{R}$

$$B_i(K) = \frac{1}{n} \int_{S^{n-1}} b(K, u)^{n-i} dS(u),$$

where dS is the (n-1)-dimensional volume element on S^{n-1} .

The width-integral of index i is a map

$$B_i: \mathcal{K}^n \to \mathbb{R}$$
.

It is positive, continuous, homogeneous of degree n-i and invariant under motion. In addition, for $i \leq n$ it is also bounded and monotone under set inclusion.

 L_p width-integral of index i is defined by

$$B_{p,i}(K) = \omega_n \left(\frac{1}{n\omega_n} \int_{S^{n-1}} b(K, u)^{p(n-i)} dS(u) \right)^{1/p}, \quad p \ge 1.$$
 (12)

The following result^[10] will be used later

$$b(K + L, u) = b(K, u) + b(L, u), \tag{13}$$

2.3 The radial function and the Blaschke linear combination

The radial function of convex body K, $\rho(K,\cdot): S^{n-1} \to \mathbb{R}$, defined for $u \in S^{n-1}$, by

$$\rho(K,\cdot)=Max\{\lambda\geq 0: \lambda\mu\in K\}.$$

If $\rho(K,\cdot)$ is positive and continuous, K will be call a star body. Let φ^n denote the set of star bodies in \mathbb{R}^n .

A convex body K is said to have a positive continuous curvature function^[5],

$$f(K,\cdot): S^{n-1} \to [0,\infty),$$

if for each $L \in \varphi^n$, the mixed volume $V_1(K, L)$ has the integral representation

$$V_1(K, L) = \frac{1}{n} \int_{S^{n-1}} f(K, u) h(L, u) dS(u).$$

The subset of \mathcal{K}^n consisting of bodies which have a positive continuous curvature function will be denoted by κ^n . Let κ_c^n denote the set of centrally symmetric member of κ^n .

The following result is true^[6], for $K \in \kappa^n$

$$\int_{S^{n-1}} u f(K, u) dS(u) = 0.$$

Suppose $K, L \in \kappa^n$ and $\lambda, \mu \geq 0$ (not both zero). From above it follows that the function $\lambda f(K, \cdot) + \mu f(L, \cdot)$ satisfies the hypothesis of Minkowski's existence theorem(see [13]). The solution of the Minkowski problem for this function is denoted by $\lambda \cdot K + \mu \cdot L$ that is

$$f(\lambda \cdot K + \mu \cdot L, \cdot) = \lambda f(K, \cdot) + \mu f(L, \cdot), \tag{14}$$

where the linear combination $\lambda \cdot K + \mu \cdot L$ is called a Blaschke linear combination. Similarly, for L_p -curvature function, we have

$$f_p(\lambda \cdot K + \mu \cdot L, \cdot) = \lambda f_p(K, \cdot) + \mu f_p(L, \cdot), \tag{15}$$

2.4 Mixed affine area and mixed bodies

The affine surface area of $K \in \kappa^n$, $\Omega(K)$, is defined by

$$\Omega(K) = \int_{S^{n-1}} f(K, u)^{n/(n+1)} dS(u). \tag{16}$$

It is well known that this functional is invariant under unimodular affine transformations. For $K, L \in \kappa^n$, and $i \in \mathbb{R}$, the *i*th mixed affine surface area of K and L, $\Omega_i(K, L)$, was defined in^[5] by

$$\Omega_i(K, L) = \int_{S^{n-1}} f(K, u)^{(n-i)/(n+1)} f(L, u)^{i/(n+1)} dS(u).$$
 (17)

Now, we define the *i*th affine area of $K \in \kappa^n$, $\Omega_i(K)$, to be $\Omega_i(K, B)$, since $f(B, \cdot) = 1$ one has

$$\Omega_i(K) = \int_{S^{n-1}} f(K, u)^{(n-i)/(n+1)} dS(u), \quad i \in \mathbb{R}.$$

the Lp-affine surface area, $\Omega_p(K)$, of convex body K is defined by

$$\Omega_p(K) = \int_{S^{n-1}} f_p(K, u)^{n/(n+p)} dS(u), \tag{18}$$

Lutwak^[8] defined mixed bodies of convex bodies K_1, \ldots, K_{n-1} as $[K_1, \ldots, K_{n-1}]$. The following property will be used later:

$$[K_1 + K_2, K_3, \dots, K_n] = [K_1, K_3, \dots, K_n] \tilde{+} [K_2, K_3, \dots, K_n]$$
(19)

2.5 Mixed projection bodies

If $K_i(i=1,2,\ldots,n-1) \in K^n$, then the mixed projection body of K_i $(i=1,2,\ldots,n-1)$ is denoted by $\Pi(K_1,\ldots,K_{n-1})$, and whose support function is given, for $u \in S^{n-1}$, by^[7]

$$h(\Pi(K_1,\ldots,K_{n-1}),u)=v(K_1^u,\ldots,K_{n-1}^u).$$
(20)

It is easy to see, $\Pi(K_1, \ldots, K_{n-1})$ is centered.

If $K_1 = \cdots = K_{n-1-i} = K$ and $K_{n-i} = \cdots = K_{n-1} = L$, then $\Pi(K_1, \ldots, K_{n-1})$ will be written as $\Pi_i(K, L)$. If L = B, then $\Pi_i(K, B)$ is called the *i*th projection body of K and is denoted $\Pi_i K$. We write $\Pi_0 K$ as ΠK .

The following property will be used:

$$\Pi(K_3, \dots, K_n, K_1 + K_2) = \Pi(K_3, \dots, K_n, K_1) + \Pi(K_3, \dots, K_n, K_2)$$
 (21)

§3. Main results and their proofs

Our main results are the following results which were stated in the introduction.

Theorem 1 If $K_1, K_2, \dots, K_n \in \mathcal{K}^n$ and $C = (K_3, \dots, K_n)$, then for $p \ge 1, i < n - 1$

$$B_{p,i}(\Pi(C, K_1 + K_2))^{1/(n-i)} \le B_{p,i}(\Pi(C, K_1))^{1/(n-i)} + B_{p,i}(\Pi(C, K_2)^{1/(n-i)}, (22))$$

with equality if and only if $\Pi(C, K_1)$ and $\Pi(C, K_2)$ are homothetic.

Proof From (12), (13), (21) and notice for i < n - 1 to use the Minkowski inequality for integral^[14,P.147], we obtain for $p \ge 1$

$$B_{p,i}(\Pi(C, K_1 + K_2))^{1/(n-i)} =$$

$$= \left(\omega_n \left(\frac{1}{n\omega_n} \int_{S^{n-1}} b(\Pi(C, K_1 + K_2), u)^{p(n-i)} dS(u)\right)^{1/p}\right)^{n-i}$$

$$= \left(\omega_n \left(\frac{1}{n\omega_n} \int_{S^{n-1}} b(\Pi(C, K_1) + \Pi(C, K_2), u)^{p(n-i)} dS(u)\right)^{1/p}\right)^{n-i}$$

$$= \left(\omega_n \left(\frac{1}{n\omega_n} \int_{S^{n-1}} (b(\Pi(C, K_1), u) + b(\Pi(C, K_2), u))^{p(n-i)} dS(u)\right)^{1/p}\right)^{n-i}$$

$$\leq \left(\omega_n \left(\frac{1}{n\omega_n} \int_{S^{n-1}} b(\Pi(C, K_1), u)^{p(n-i)} dS(u)\right)^{1/p}\right)^{n-i}$$

$$+ \left(\omega_n \left(\frac{1}{n\omega_n} \int_{S^{n-1}} b(\Pi(C, K_2), u)^{p(n-i)} dS(u)\right)^{1/p}\right)^{n-i}$$

$$= B_{p,i}(\Pi(C, K_1))^{1/(n-i)} + B_{p,i}(\Pi(C, K_2))^{1/(n-i)},$$

with equality if and only if $\Pi(C, K_1)$ and $\Pi(C, K_2)$ have similar width, in view of $\Pi(C, K_1)$ and $\Pi(C, K_2)$ are centered (centrally symmetric with respect to origin), then with equality if and only if $\Pi(C, K_1)$ and $\Pi(C, K_2)$ are homothetic.

The proof of inequality (22) is complete.

Taking p = 1 to (22), (22) changes to the following result

Corollary 1 If
$$K_1, K_2, ..., K_n \in \mathcal{K}^n$$
 and $C = (K_3, ..., K_n)$, then

$$B_i(\Pi(C, K_1 + K_2))^{1/(n-i)} \le B_i(\Pi(C, K_1))^{1/(n-i)} + B_i(\Pi(C, K_2)^{1/(n-i)}, \quad (23)$$

with equality if and only if $\Pi(C, K_1)$ and $\Pi(C, K_2)$ are homothetic.

Taking p = 1, i = 0 to (22), inequality (22) changes to the following result

Corollary 2 If
$$K_1, K_2, ..., K_n \in \mathcal{K}^n$$
, let $C = (K_3, ..., K_n)$, then
$$B(\Pi(C, K_1 + K_2))^{1/n} \le B(\Pi(C, K_1))^{1/n} + B(\Pi(C, K_2)^{1/n},$$
(24)

with equality if and only if $\Pi(C, K_1)$ and $\Pi(C, K_2)$ are homothetic.

Theorem 2 If $K_1, K_2, ..., K_n \in \mathcal{K}^n$ and all of mixed bodies of $K_1, K_2, ..., K_n$ have positive continuous curvature functions, then for $p \ge 1$

$$\Omega_p([K_1 + K_2, K_3, \dots, K_n])^{(n+p)/n}$$

$$\geq \Omega_p([K_1, K_3, K_4 \dots, K_n])^{(n+p)/n} + \Omega_p([K_2, K_3, \dots, K_n])^{(n+p)/n}$$
 (25)

with equality if and only if $[K_1, K_3, K_4, \dots, K_n]$ and $[K_2, K_3, \dots, K_n]$ are homothetic.

Proof From (15), (18), (19) and in view of the Minkowski inequality for integral^[14,P.147], we obtain that

$$\begin{split} \Omega_p([K_1+K_2,K_3,K_4,\dots,K_n])^{(n+p)/n} \\ &= \left(\int_{S^{n-1}} f_p([K_1+K_2,K_3,K_4,\dots,K_n],u)^{n/(n+p)}dS(u)\right)^{(n+p)/n} \\ &= \left(\int_{S^{n-1}} f_p([K_1,K_3,K_4,\dots,K_n]\tilde{+}[K_2,K_3,\dots,K_n],u)^{n/(n+p)}dS(u)\right)^{(n+p)/(n)} \\ &= \left(\int_{S^{n-1}} (f_p([K_1,K_3,K_4,\dots,K_n],u)+f_p([K_2,K_3,\dots,K_n],u))^{n/(n+p)}dS(u)\right)^{(n+p)/n} \\ &\geq \left(\int_{S^{n-1}} f_p([K_1,K_3,K_4,\dots,K_n],u)^{n/(n+p)}dS(u)\right)^{(n+p)/n} \\ &+ \left(\int_{S^{n-1}} f_p([K_2,K_3,\dots,K_n],u)^{n/(n+p)}dS(u)\right)^{(n+p)/n} \\ &= \Omega_p([K_1,K_3,K_4,\dots,K_n])^{(n+p)/n} + \Omega_p([K_2,K_3,\dots,K_n])^{(n+p)/n}, \end{split}$$
 with equality if and only if $[K_1,K_3,K_4,\dots,K_n]$ and $[K_2,K_3,\dots,K_n]$ are ho-

The proof of Theorem 2 is complete.

Taking p = 1 to (25), we have

mothetic.

Corollary 3 If $K_1, K_2, ..., K_n \in \mathcal{K}^n$ and all of mixed bodies of $K_1, K_2, ..., K_n$ have positive continuous curvature functions, then

$$\Omega([K_1 + K_2, K_3, \dots, K_n])^{(n+1)/n}$$

$$\geq \Omega([K_1, K_3, K_4, \dots, K_n])^{(n+1)/n} + \Omega([K_2, K_3, \dots, K_n])^{(n+1)/n},$$

with equality if and only if $[K_1, K_3, K_4, \ldots, K_n]$ and $[K_2, K_3, \ldots, K_n]$ are homothetic.

References

- [1] K. Ball, "Volume of sections of cubes and related problems", Israel Seminar (G.A.F.A.) 1988, Lecture Notes in Math. Vol.1376, Springer-Verlag, Berlin and New York, 1989, 251–260.
- [2] J.Bourgain and J.Lindenstrauss, "Projection bodies", Israel Seminar (G.A.F.A) 1986–1987, Lecture Notes in Math. Vol.1317, Springer-Verlag, Berlin and New York, 1988, 250–270.
- [3] R. J. Gardner, "Geometric Tomography", Cambridge: Cambridge University Press, 1995.
- [4] R. Schneider, "Convex bodies: The Brunn-Minkowski Theory", Cambridge: Cambridge University Press, 1993.
- [5] E. Lutwak, Centroid bodies and dual mixed volumes, *Proc. London Math. Soc.*, **60**(1990), 365–391.
- [6] E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc, **287**(1985), 92–106.
- [7] E. Lutwak, Inequalities for mixed projection, *Tans. Amer. Math. Soc.*, **339**1993, 901-916.
- [8] E. Lutwak, Volume of mixed bodies, Trans. Amer. Math. Soc., 294(1986), 487-500.
- [9] E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125(1987), 351-360.
- [10] E. Lutwak, Width-integrals of convex bodies, *Proc. Amer. Math. Soc.*, **53**(1975), 435-439.

- [11] W. Blaschke, "Vorlesungen über Integral geometric I, II", Teubner, Leipzig, 1936, 1937; reprint, chelsea, New York, 1949.
- [12] Hadwiger H, "Vorlesungen \ddot{u} ber inhalt, Oberfläche und isoperimetrie, Springer, Berlin, 1957.
- [13] T. Bonnesen and W, Fenchel, "Theorie der konvexen Körper", Springer, Berlin, 1934.
- [14] G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities", Cambridge Univ. Press. Cambridge, 1934.