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of R2 and of R3 are analyzed in details under new hypotheses.
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1 Introduction

Let Ω be a domain of Rn with smooth boundary ∂Ω.
Recall the Dirichlet and Neumann problems for the Laplacian.

(1) Dirichlet Problem (DP):

Find u ∈ C2(Ω) ∩ C(Ω̄)) such that

∆u = f in Ω, u = g on ∂Ω. (1)

(2) Neumann Problem (NP):

Find u ∈ C2(Ω) ∩ C1(Ω̄) such that

∆u = f in Ω,
du

dηx
= g1 on ∂Ω, (2)

where ηx is the outward unit normal to ∂Ω at x ∈ ∂Ω, du

dηx
is the normal derivative of u at

x, f : Ω→ R, and g, g1 : ∂Ω→ R are prescribed continuous functions.
By analogy with the Green function for the Dirichlet problem for a domain Ω, we consider

the Green type function for the Neumann problem for Ω (also known as Neumann’s function,
or Green’s function for the Neumann problem or Green’s function of the second kind). We
will give the explicit forms of the Neumann’s functions and the solution of the Neumann
problem for the upper half-space of the n-th dimensional euclidian space R

n, n ≥ 2.
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58 E. CONSTANTIN AND N. H. PAVEL

The concept of Green type function for (NP) has been considered by several authors
([14], [9], [19], [10], [17], [15], [2], [6], [12], [13]).

In [3], there are presented the expressions of the Green’s functions for the Neumann’s
problem for a ball in R

2 and R
3. In [12], Neumann’s function for the sphere in R

3 is
constructed using the classical method of images and expressed in terms of eigenvalues
associated with the surface, leading to an analogue of the Poisson integral as a solution to
the Neumann problem for the sphere. In [6], there are given the Neumann’s function and
the solution of the Neumann problem for the interior and the exterior of the sphere of Rn,
n ≥ 2.

Green functions of the Laplacian for Neumann problems relative to all domains bounded
by the coordinate surfaces in the circular cylindrical coordinate system are constructed in
[2].

In [13] it can be found a construction of the Green function for the three-dimensional
Laplace equation, in the interior of an arbitrary rectangular channel subject to homogeneous
Neumann conditions on the boundaries.

The explicit forms of the Green’s function and of the Neumann’s function G and G1 in
the half-plane x2 ≥ 0 in R

2 are given in [10], while in [17] there are given the Green’s and
Neumann’s functions for both the half-plane x2 ≥ 0 and the upper half-space x3 ≥ 0 in R

3.
However, in both books it is not proved that the functions u and u1 obtained by means of
G and G1 and Green’s formula are solutions of the (DP) and (NP), respectively.

In [9], the explicit expressions of the Green’s and the Neumann’s functions are given for
the upper half-spaces R2

+ and R
3
+, and it is shown that the functions u and u1 obtained with

their aid are solutions of the (DP) and (NP), respectively, under the hypothesis that g and
g1 are analytical. Physical interpretations of the Green’s and Neumann’s functions can be
found in [9]. Also the Green’s and Neumann’s functions for the interior and the exterior of
the unit circle in R

2 and unit sphere in R
3 centered at the origin are given in [9].

In [19], it is constructed the Green’s function for the Neumann problem formulated for
the unit sphere in R

3 centered at the origin. Also in [19], there are obtained the explicit
solutions u and u1 of the (DP) and (NP) using Green’s formula for the tridimensional
upper-half space, respectively (without using the Green’s function for (DP) or the Green’s
function for (NP)). Then it is proved that u and u1 are indeed solutions of (DP) and (NP),
respectively, under the assumptions: g and g1 are continuous on x3 = 0, g is bounded and
|g(x1, x2)| ≤ M

(
√

x2
1
+x2

2
)1+a

, where 0 < a < 1, and M is a positive constant.

In [4], it is derived the Green’s function and it is shown a Poisson Formula for the positive
half-space of Rn, n ≥ 2.

We obtain the Green type function for the positive half-space R
n
+, n ≥ 2, and use it

to find the solution of the (NP) under the assumption that g is continuous and bounded
on R

n−1, and g1 is continuous and with compact support in R
n−1 (subsection 3.3). The

cases where Ω is the positive half space R
2
+ and R

3
+, respectively, are presented in details

under hypotheses different from the ones considered by other authors (subsection 3.1 and
subsection 3.2).
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2 Green Functions for Dirichlet and Neumann Prob-

lems

Suppose that the function u ∈ C2(Ω)∩C1(Ω̄). Then the following (Riemann-Green) formula
holds, i.e.,

u(y) =

∫

Ω

G(x, y)∆u(x) dx−
∫

∂Ω

(G(x, y)
du

dηx
(x)− u(x)dG(x, y)

dηx
) dσx, (3)

where G(x, y) = ψ(‖x − y‖) + g̃(x), x ∈ Ω̄, y ∈ Ω, x 6= y, g̃(x) is an arbitrary harmonic
function in Ω and

ψ(r) =
r2−n

(2− n)σn
, if n > 2 and ψ(r) =

1

2π
ln r, if n = 2, (3′)

with r = ‖x− y‖. Finally, σn is the surface area of the unit sphere in R
n.

Suppose that the function G(x, y) in the above formula satisfies the additional property

G(x, y) = 0 for x ∈ ∂Ω, y ∈ Ω. (4)

Then the solution u of (DP) with the regularity u ∈ C2(Ω) ∩ C1(Ω̄) (if any) is given by

u(y) =

∫

Ω

G(x, y)f(x)dx+

∫

∂Ω

g(x)
dG(x, y)

dηx
dσx. (5)

A Green’s function G(x, y) for ∆ on Ω is a function G as above, i.e., having the properties
x → G(x, y) belongs to C2(Ω̄ \ {y}), ∆xG(x, y) = 0 for x ∈ Ω, G(x, y) = 0, for x ∈ ∂Ω,
y ∈ Ω.

For the Neumann problem, u is not prescribed on the boundary ∂Ω of Ω, so the formula
(3) suggests to look for a function G = G1 with the condition

dG1(x, y)

dηx
= 0, for x ∈ ∂Ω, (6)

instead of G(x, y) = 0, for x ∈ ∂Ω for the Dirichlet problem. This means to find a function
g̃(x) = K(x, y) with x→ K(x, y) in C1(Ω̄) ∩ C2(Ω), ∀ y ∈ Ω,

∆xK(x, y) = 0, ∀x, y ∈ Ω,

dK(x, y)

dηx
= −dψ‖x− y‖

dηx
= −ψ′(r)x− y

r
· ηx, x ∈ ∂Ω, y ∈ Ω,

where ψ is given above, i.e., ψ′(r) =
r1−n

σn
. Therefore, the solution u1 ∈ C2(Ω) ∩ C1(Ω̄) (if

any) of the (NP) is necessarily given by

u1(y) =

∫

Ω

G1(x, y)f(x) dx−
∫

∂Ω

G1(x, y)g1(x)dσx. (7)

Such a function G1 will be called a Green type function for the (NP) on Ω (also called
Green’s function for (NP) in [14], [19], [3], [2], or Neumann’s function in [9], [17], [15], or
Green’s function of the second kind in [10]).
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3 Green function for the Neumann Problem for R
n
+

In this section we will build Green’s functions for the (DP) and (NP) for the half-space R
n
+,

n ≥ 2, using the ideas developed in Section 2. After that, we will check directly that the
corresponding representation formulas for the solutions of (DP) and (NP) are valid under
appropriate assumptions on g and g1.

First we consider the cases n = 2 and n = 3 under hypothesis on g1 different from the
ones used by other authors.

3.1 Construction of the Green function for the Neumann Problem

for R
2
+

[14] Let Ω = {x = (x1, x2) ∈ R2, x2 > 0} be the positive half-space. Clearly, ∂Ω = {x =
(x1, x2) ∈ R2, x2 = 0} = {x = (x1, 0), x1 ∈ R}. For y = (y1, y2) define by reflection
y∗ = (y1,−y2). Then the function:

G(x, y) =
1

2π
(ln‖x− y‖ − ln‖x− y∗‖), x ∈ Ω̄, y ∈ Ω, x 6= y, (8)

is a Green function for the (DP), and

G1(x, y) =
1

2π
(ln‖x− y‖+ ln‖x− y∗‖), x ∈ Ω̄, y ∈ Ω, x 6= y, (9)

is a Green type function for (NP).

As ‖x−y‖ = ‖x−y∗‖ = r for y ∈ Ω, x ∈ ∂Ω, it follows that G(x, y) = 0, x ∈ ∂ Ω, y ∈ Ω.

The outward normal ηx to ∂Ω = {x = (x1, x2) ∈ R2, x2 = 0} at x ∈ ∂Ω is ηx = (0,−1).
The normal derivative of G is:

dG

dηx
= − ∂G

∂x2
= π−1y2r

−2 with x = (x1, 0), y = (y1, y2), y2 > 0,

where r2 = (x1 − y1)2 + y22 . Similarly we can check that
dG1

dηx
= 0.

The formula (3) suggests that a solution to the problem: ∆u = 0 in Ω, u = g on ∂Ω,
could be

u(y) =

∫

∂Ω

u(x)
dG

dηx
(x, y) dσx = π−1

∫ ∞

−∞

y2g(x1)dx1
(x1 − y1)2 + y22

, (10)

with x = (x1, 0), g(x1, 0) = g(x1), y = (y1, y2), y2 > 0.

Clearly G1(x, y) =
1

π
ln‖x − y‖, for x = (x1, 0), y ∈ Ω. Therefore, (3) suggests that a

possible solution to the Neumann problem (with f = 0) could be

u1(y) = −
∫

∂Ω

G1(x, y)g1(x)dσx = −π−1

∫ ∞

−∞

g1(x1)ln‖x− y‖dx1, (11)
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with x = (x1, 0), g1(x1, 0) = g1(x1), y = (y1, y2), y2 > 0.
The functions g and g1 must guarantee the convergence of the improper integrals (10)

and (11), respectively (i.e., the existence of u and u1), and the fact that these functions u and
u1 are solutions of the above Dirichlet and Neumann problems with f = 0. An important
case in which these requirements are fulfilled is given by:

Theorem 1 Let g be continuous and bounded on R and g1 be continuous with compact
support in R. Then the functions u and u1 given by the improper integrals (10) and (11)
satisfy:
1. u ∈ C2(Ω) ∩ C(Ω̄)),∆u = 0 in Ω, u = g on ∂Ω.

2. u1 ∈ C2(Ω) ∩ C1(Ω̄),∆u1 = 0 in Ω,
du1

dηx
= g1, on ∂Ω.

Proof. The key fact is the elementary formula:

π−1

∫ ∞

−∞

y2dx1

(x1 − y1)2 + y22
= 1, x = (x1, 0), y = (y1, y2), y2 > 0. (12)

which follows by the change of variable: x1 − y1 = y2z, so dx1 = y2dz.
The fact that u and u1 are harmonic in Ω follows by differentiating under the integral

sign, in conjunction with:

∆y
dG

dηx
(x, y) =

d

dηx
(∆yG(x, y)), G(x, y) = G(y, x) for x ∈ Ω̄, y ∈ Ω, x 6= y, and

∆yG(x, y) = ∆yG(y, x) = 0 for x ∈ ∂Ω, y ∈ Ω.
As g is bounded and g1 is continuous and with compact support in R, u and u1 given

by (10) and (11) are bounded.
Let us to prove that u(x) = g(x) for x = (x1, 0), i.e., that

lim
y→y0

u(y) = g(y0), ∀ y0 with y0 = (y10 , 0), y = (y1, y2),with y2 > 0. (13)

In view of (10), we can write

u(y)− g(y0) = π−1

∫ ∞

−∞

y2(g(x1)− g(y10))dx1
(x1 − y1)2 + y22

, (14)

y = (y1, y2), y2 > 0.
Given ǫ > 0, there exists δ(ǫ) > 0 such that

|g(x1)− g(y10)| < ǫ, for |x1 − y10 | < δ.

Let us write:

u(y)− g(y0) = π−1

∫

|x1−y0
1
|<δ

y2(g(x1)− g(y10))dx1
(x1 − y1)2 + y22

+

+π−1

∫

|x1−y0
1
|≥δ

y2(g(x1)− g(y10))dx1
(x1 − y1)2 + y22

= I1 + I2. (15)
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In view of (10) and (12), it follows that |I1| ≤ ǫ. Moreover, by the same change of
variable as above, we have:

∫ y0
1−δ

−∞

y2dx1

(x1 − y1)2 + y22
=

∫

y0
1
−δ−y1
y2

−∞

dz

1 + z2
→ 0, as y1 → y10 , y2 ↓ 0.

Similarly,

∫ ∞

y0
1
+δ

y2dx1

(x1 − y1)2 + y22
=

∫ ∞

y0
1
+δ−y1
y2

dz

1 + z2
→ 0, as y1 → y10 , y2 ↓ 0.

It follows that limy→y0
I2 = 0, as g is bounded on R. This in conjunction with |I1| ≤ ǫ

implies lim supy→y0
|u(y)− g(y0) ≤ ǫ, ∀ǫ > 0, so (13) is valid.

Under the hypotheses on g1, the function u1 is well defined and of class C1(Ω̄). Differ-
entiating under the integral sign we obviously obtain:

−∂u1(y)
∂y2

= π−1

∫ ∞

−∞

y2g1(x1)dx1
(x1 − y1)2 + y22

.

On the basis of the previous discussion, this implies
du1

dηy
= −∂u1(y)

∂y2
= g1(y) on the

boundary ∂Ω of Ω as g1 is bounded, which completes the proof.

3.2 Construction of the Green function for the Neumann Problem

for R
3
+

We build the Green functions G and G1 for the (DP) and (NP), respectively, in the situation
where Ω = R

3
+, and then we verify directly that the representation formulas of the functions

u and u1 obtained by means of G and G1 do indeed provide us with solutions of the (DP)
and (NP), respectively.

The following classical result will be needed to achieve that (Theorem 1.1.11, [1]).

Theorem 2 [1] Let f : Rn → (−∞,∞) be a measurable function and let R > 0.
i) If |f(x)| ≤ c‖x‖−λ, for all x ∈ R

n with ‖x‖ ≤ R, where c is a positive constant, and

λ < n, then

∫

‖x‖≤R

|f(x)|dx < +∞.

ii) If |f(x)| ≤ c‖x‖−λ, for all x ∈ R
n with ‖x‖ ≥ R, where c is a positive constant, and

λ > n, then

∫

‖x‖≥R

|f(x)|dx < +∞.

Next we construct the Green function for the Neumann problem for the positive half-
space R

3
+.

Let Ω = {x = (x1, x2, x3) ∈ R
3, x3 > 0} be the positive half-space. Clearly, ∂Ω = {x =

(x1, x2, x3) ∈ R
3, x3 = 0} = {x = (x1, x2, 0), (x1, x2) ∈ R

2}. For y = (y1, y2, y3) define by
reflection y∗ = (y1, y2,−y3). Then the function:
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G(x, y) =
1

4π‖x− y‖ −
1

4π‖x− y∗‖ , x ∈ Ω̄, y ∈ Ω, x 6= y, (16)

is a Green function for the (DP) with f = 0, and

G1(x, y) =
1

4π‖x− y‖ +
1

4π‖x− y∗‖ , x ∈ Ω̄, y ∈ Ω, x 6= y, (17)

is a Green type function for (NP) with f = 0.
As ‖x−y‖ = ‖x−y∗‖ = r for y ∈ Ω, x ∈ ∂Ω, it follows that G(x, y) = 0, x ∈ ∂Ω, y ∈ Ω.
The outward normal ηx to ∂Ω = {x = (x1, x2, x3) ∈ R

3, x3 = 0} at x ∈ ∂Ω is ηx =

(0, 0,−1). The normal derivative of G is
dG

dηx
= − ∂G

∂x3
=

y3

2πr3
with x = (x1, x2, 0), y =

(y1, y2, y3), y3 > 0, where r2 = (x1 − y1)
2 + (x2 − y2)

2 + y23 . Similarly we can check that
dG1

dηx
= 0, for x ∈ ∂Ω, y ∈ Ω.

The formula (3) suggests that a solution to the problem: ∆u = 0 in Ω, u = g on ∂Ω,
could be

u(y) =

∫

∂Ω

u(x)
dG

dηx
(x, y) dσx =

1

2π

∫ ∞

−∞

∫ ∞

−∞

y3g(x1, x2)dx1dx2

[(x1 − y1)2 + (x2 − y2)2 + y23 ]
3
2

,

with x = (x1, x2, 0), g(x1, x2, 0) = g(x1, x2), y = (y1, y2, y3), y3 > 0. (18)

Clearly G1(x, y) =
1

2π‖x− y‖ , for x = (x1, x2, 0), y ∈ Ω. Therefore, (3) suggests that a

possible solution to the problem ∆u = 0 in Ω,
du

dηx
= g1 on ∂Ω, could be

u1(y) = −
∫

∂Ω

G1(x, y)g1(x)dηx = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

g1(x1, x2)

‖x− y‖ dx1dx2, (19)

with x = (x1, x2, 0), g1(x1, x2, 0) = g1(x1, x2), y = (y1, y2, y3), y3 > 0.
The functions g and g1 must guarantee the convergence of the improper integrals (18)

and (19), respectively (i.e., the existence of u and u1), and the fact that these functions u and
u1 are solutions of the above Dirichlet and Neumann problems with f = 0. An important
case in which these requirements are fulfilled is given by:

Theorem 3 Let g be continuous and bounded on R
2, and g1 be continuous and with compact

support in R
2. Then the functions u and u1 given by the improper integrals (18) and (19)

satisfy:
1. u ∈ C2(Ω) ∩ C(Ω̄)),∆u = 0 in Ω, u = g on ∂Ω

2. u1 ∈ C2(Ω) ∩ C1(Ω̄), ∆u1 = 0 in Ω,
du1

dηx
= g1 on ∂Ω.

Proof. We will use the formula

I0 =
1

2π

∫ ∞

−∞

∫ ∞

−∞

y3dx1dx2

[(x1 − y1)2 + (x2 − y2)2 + y23 ]
3
2

= 1, (20)
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where x = (x1, x2, 0), y = (y1, y2, y3), y3 > 0.
To show (20), we make the change of variables x1 − y1 = y3z, x2 − y2 = y3w, so

dx1 = y3dz, dx2 = y3dw. The integral I0 becomes

I0 =
1

2π

∫ ∞

−∞

∫ ∞

−∞

dzdw

(z2 + w2 + 1)3/2
.

Since

∫

dt

(t2 + a2)3/2
=

t

a2
√
t2 + a2

+ C, we get

I0 =
1

2π

∫ ∞

−∞

[

lim
t1→−∞

lim
t2→∞

∫ t2

t1

dz

(z2 + w2 + 1)3/2

]

dw

=
1

2π

∫ ∞

−∞

[

lim
t1→−∞

lim
t2→∞

(

z

(w2 + 1)
√
z2 + w2 + 1

|t2t1
)]

dw

=
1

2π

∫ ∞

−∞

[

lim
t2→∞

t2

(w2 + 1)
√

t22 + w2 + 1
− lim

t1→−∞

t1

(w2 + 1)
√

t21 + w2 + 1

]

dw

=
1

π

∫ ∞

−∞

1

w2 + 1
dw =

1

π
lim

t1→−∞
lim

t2→∞

∫ t2

t1

1

w2 + 1
dw

=
1

π
lim

t1→−∞
lim

t2→∞
(arctan t2 − arctan t1) = 1.

The fact that u and u1 are harmonic on Ω follows by differentiating under the integral
sign and taking into account that G1(x, y) = G1(y, x), x ∈ Ω̄, y ∈ Ω, x 6= y, ∆yG1(x, y) =
∆yG1(y, x) = 0, y ∈ Ω, x ∈ ∂Ω, and
∆y

dG

dηx
(x, y) =

d

dηx
(∆yG(x, y)), G(x, y) = G(y, x) for y 6= x, x ∈ Ω̄, y ∈ Ω, ∆yG(x, y) =

∆yG(y, x) = 0 for y ∈ Ω, x ∈ ∂Ω.
As g is bounded on R

2, and g1 is continuous and with compact support in R
2, u and u1

given by (18) and (19) are bounded due to Theorem 2.
Let us to prove that u(x) = g(x) for x = (x1, x2, 0), i.e., that

lim
y→ȳ

u(y) = g(ȳ), (21)

for all ȳ = (ȳ1, ȳ2, 0), y = (y1, y2, y3), with y3 > 0.
In view of (18) and (20), we can write

u(y)− g(ȳ) = 1

2π

∫ ∞

−∞

∫ ∞

−∞

y3(g(x1, x2)− g(ȳ1, ȳ2))dx1dx2
[(x1 − y1)2 + (x2 − y2)2 + y23 ]

3
2

, (22)

where y = (y1, y2, y3), y3 > 0, ȳ = (ȳ1, ȳ2, 0), x = (x1, x2, 0), (x1, x2) ∈ R
2.

Given ǫ > 0, there exists δ(ǫ) > 0 such that

|g(x1, x2)− g(ȳ1, ȳ2)| < ǫ, for ‖(x1, x2)− (ȳ1, ȳ2)‖ < δ.
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We obtain

u(y)− g(ȳ) = 1

2π

∫ ∫

‖(x1,x2)−(ȳ1,ȳ2)‖<δ

y3(g(x1, x2)− g(ȳ1, ȳ2))dx1dx2
[(x1 − y1)2 + (x2 − y2)2 + y23 ]

3
2

+
1

2π

∫ ∫

‖(x1,x2)−(ȳ1,ȳ2)‖≥δ

y3(g(x1, x2)− g(ȳ1, ȳ2))dx1dx2
[(x1 − y1)2 + (x2 − y2)2 + y23 ]

3
2

= I1 + I2. (23)

From (20), it follows that |I1| ≤ ǫ.
We will show that the integral I2 converges to zero for y → ȳ.

If ‖y − ȳ‖ < δ

2
, ‖x− ȳ‖ ≥ δ, we get

‖x− ȳ‖ ≤ ‖x− y‖+ ‖y − ȳ‖ ≤ ‖x− y‖+ δ

2
≤ ‖x− y‖+ 1

2
‖x− ȳ‖,

and so ‖x− y‖ ≥ 1

2
‖x− ȳ‖.

Since g is bounded, let M > 0 be a constant such that |g(x)| ≤M , for all x ∈ R
2.

Then

|I2| ≤
2M

2π

∫ ∫

‖(x1,x2)−(ȳ1,ȳ2)‖≥δ

y3dx1dx2

[(x1 − y1)2 + (x2 − y2)2 + y23 ]
3
2

≤ 8My3

π

∫ ∫

‖(x1,x2)−(ȳ1,ȳ2)‖≥δ

dx1dx2

[(x1 − ȳ1)2 + (x2 − ȳ2)2]
3
2

→ 0,

as y → ȳ, i.e., as y3 → 0+, because the above integral is bounded in view of Theorem 2.
We conclude that lim

y→ȳ
I2 = 0, which in conjunction with |I1| ≤ ǫ implies lim sup

y→ȳ
|u(y)−

g(ȳ)| ≤ ǫ, for all ǫ > 0, so (21) is valid.
Under the hypotheses on g1 the function u1 is well defined and of class C1(Ω̄). Differen-

tiating under the integral sign we obviously obtain:

−∂u1(y)
∂y3

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

y3g1(x1, x2)dx1dx2

[(x1 − y1)2 + (x2 − y2)2 + y23 ]
3
2

.

On the basis of the previous discussion, this implies:
du1

dηy
= −∂u1(y)

∂y3
= g1(y) on the boundary ∂Ω of Ω as g1 is bounded, which completes the

proof.

3.3 Construction of the Green function for the Neumann Problem

for R
n

+

Next we generalize the result of section 3.2 by constructing the Green function for the Neu-
mann problem for the positive half-space R

n
+, n > 2.

Let Ω = R
n
+ = {x = (x1, x2, . . . , xn) ∈ R

n, xn > 0}, n > 2, be the positive half-space.
Clearly, ∂Ω = {x = (x1, x2, . . . , xn) ∈ R

n, xn = 0} = {x = (x1, . . . , xn−1, 0), (x1, . . . , xn−1) ∈
R

n−1}.
For y = (y1, y2, . . . , yn) define by reflection y∗ = (y1, . . . , yn−1,−yn).
Then the function:
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G(x, y) = −ψ(x, y) + ψ(x, y⋆), x ∈ Ω̄, y ∈ Ω, x 6= y, i.e.,

G(x, y) =
1

(n− 2)σn‖x− y‖n−2
− 1

(n− 2)σn‖x− y∗‖n−2
, (24)

is a Green function for the (DP) with f = 0, and

G1(x, y) = −ψ(x, y)− ψ(x, y⋆), x ∈ Ω̄, y ∈ Ω, x 6= y, i.e.,

G1(x, y) =
1

(n− 2)σn‖x− y‖n−2
+

1

(n− 2)σn‖x− y∗‖n−2
, (25)

is a Green type function for (NP) with f = 0.

As ‖x−y‖ = ‖x−y∗‖ = r for y ∈ Ω, x ∈ ∂Ω, it follows that G(x, y) = 0, x ∈ ∂Ω, y ∈ Ω.

The outward normal ηx to ∂Ω at x ∈ ∂Ω is ηx = (0, . . . , 0,−1). The normal derivative

of G is
dG

dηx
= − ∂G

∂xn
=

2yn
σnrn

, x = (x1, . . . , xn−1, 0), y = (y1, . . . , yn−1, yn), yn > 0, where

r2 = (x1 − y1)
2 + . . . + (xn−1 − yn−1)

2 + y2n. Similarly we can check that
dG1

dηx
= 0, for

x ∈ ∂Ω, y ∈ Ω.

The formula (3) suggests that a solution to the problem: ∆u = 0 in Ω, u = g on ∂Ω,
could be:

u(y) =

∫

∂Ω

u(x)
dG

dηx
(x, y) dσx =

2yn
σn

∫

∂Rn
+

g(x)

‖x− y‖n dσx

=
2yn
σn

∫ ∞

−∞

. . .

∫ ∞

−∞

g(x1, . . . , xn−1)dx1 . . . dxn−1

[(x1 − y1)2 + . . .+ (xn−1 − yn−1)2 + y2n]
n
2

, (26)

x = (x1, . . . , xn−1, 0), g(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1), y = (y1, . . . , yn), yn > 0.

The function u is the solution of the (DP) with f = 0 (see [4] for the proof of the Poisson’s
formula for the half-space of Rn

+, n > 2).

Clearly G1(x, y) =
2

(n− 2)σn‖x− y‖n−2
, for x = (x1, . . . , xn−1, 0), y ∈ R

n
+.

Therefore, (3) suggests that a possible solution to the problem ∆u = 0 in Ω,
du

dηx
= g1

on ∂Ω, could be

u1(y) = −
∫

∂R+
n

G1(x, y)g1(x)dσx = − 2

(n− 2)σn

∫

∂Rn
+

g1(x)

‖x− y‖n−2
dσx, (27)

x = (x1, . . . , xn−1, 0), g1(x1, . . . , xn−1, 0) = g1(x1, . . . , xn−1), y = (y1, . . . , yn), yn > 0.

The function g1 must guarantee the convergence of the improper integral (27) (i.e., the
existence of u1), and the fact that this function u1 is solution of the Neumann problems
with f = 0. An important case in which these requirements are fulfilled is given by:
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Theorem 4 Let g1 be continuous and with compact support in R
n−1.

Then the function u1 given by the improper integral (27) satisfies:

u1 ∈ C2(Ω) ∩ C1(Ω̄), ∆u1 = 0 in Ω,
du1

dηx
= g1 on ∂Ω.

Proof. We will use the formula

I0 =
2yn
σn

∫

∂Rn
+

1

‖x− y‖n dσx = 1, (28)

where x = (x1, . . . , xn−1, 0), y = (y1, . . . , yn), yn > 0.
The fact that u1 are harmonic on Ω follows by differentiating under the integral sign

and taking into account that G1(x, y) = G1(y, x), x ∈ Ω̄, y ∈ Ω, x 6= y, ∆yG1(x, y) =
∆yG1(y, x) = 0, y ∈ Ω, x ∈ ∂Ω.

As g1 is continuous and with compact support in R
n−1, u1 defined by (27) is bounded

due to Theorem 2.

Let us to prove that
du

dηx
= g1(x) for x = (x1, . . . , xn−1, 0), i.e., that

lim
y→ȳ

du

dηy
= g1(ȳ), (29)

for all ȳ = (ȳ1, . . . , ȳn−1, 0) fixed, and y = (y1, . . . , yn), yn > 0.
Under the hypotheses on g1 the function u1 is well defined and of class C1(Ω̄). Differen-

tiating under the integral sign we obviously obtain:

du1

dηy
= −∂u1(y)

∂yn
=

2

σn

∫

∂Rn
+

yng1(x)

‖x− y‖n dσx.

In view of (27) and (28), we can write

du1

dηy
− g(ȳ) = 2yn

σn

∫

∂Rn
+

g1(x)− g1(ȳ)
‖x− y‖n dσx,

where y = (y1, . . . , yn), yn > 0, ȳ = (ȳ1, . . . , ȳn−1, 0), x = (x1, . . . , xn−1, 0), (x1, . . . , xn−1) ∈
R

n−1.
Given ǫ > 0, there exists δ(ǫ) > 0 such that

|g1(x)− g1(ȳ)| < ǫ, for ‖x− ȳ‖ < δ.

Then if ‖y − ȳ‖ < δ

2
, y ∈ R

n
+, we have

du1

dηy
− g(ȳ) = 2yn

σn

∫

∂Rn
+
∩B(ȳ,δ)

g1(x)− g1(ȳ)
‖x− y‖n dσx +

2yn
σn

∫

∂Rn
+
\B(ȳ,δ)

g1(x)− g1(ȳ)
‖x− y‖n dσx

= I1 + I2, (30)
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where B(ȳ, δ) = {x ∈ R
n; ‖x− ȳ‖ < δ}.

From (28), it follows that |I1| ≤ ǫ.

If ‖y − ȳ‖ < δ

2
, ‖x− ȳ‖ ≥ δ, we get

‖x− ȳ‖ ≤ ‖x− y‖+ ‖y − ȳ‖ ≤ ‖x− y‖+ δ

2
≤ ‖x− y‖+ 1

2
‖x− ȳ‖,

and so ‖x− y‖ ≥ 1

2
‖x− ȳ‖.

Since g1 is bounded, let M > 0 be a constant such that |g1(x)| ≤M , for all x ∈ R
n−1.

Then

|I2| ≤ 2M

∫

∂Rn
+
\B(ȳ,δ)

2yn
σn‖x− y‖n

dσx

≤ 2n+2Myn

σn

∫

∂Rn
+
\B(ȳ,δ)

1

‖x− ȳ‖n dσx → 0,

as y → ȳ, i.e., as yn → 0+, because the above integral is bounded in view of Theorem 2.

We conclude that lim
y→ȳ

I2 = 0, which in conjunction with |I1| ≤ ǫ implies lim sup
y→ȳ

| du
dηy

−

g1(ȳ)| ≤ ǫ, for all ǫ > 0, so (29) is valid, which completes the proof.
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