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1. Formulation of the Problem

Suppose that a thin elastic plate occupies a bounded domain S ⊂ R
2 with a simple, closed,

and sufficiently smooth (Lyapunov) contour ∂S. The plate experiences plane deformation,
which is described by the displacement vector-valued function u(x) = (u1(x), u2(x))

T , where
x = (x1, x2) and the superscript T denotes matrix transposition. We assume that the
plate lies on an elastic foundation and that the interaction is described by a matrix K =
diag {k, k}, where k > 0 is the corresponding elastic coefficient. The boundary value problem
of equilibrium of the plate subject to transverse external forces q(x) = (q1(x), q2(x))

T with
the Dirichlet boundary condition has the form

Zu = Au−Ku = q in S,

u = f on ∂S,

where

A =

(

µ∆+ (λ+ µ)∂21 (λ+ µ)∂1∂2

(λ+ µ)∂1∂2 µ∆+ (λ+ µ)∂22

)

, ∂i =
∂

∂xi
, i = 1, 2.

Let Hm(S), H̊m(S), and Hm(∂S), m ∈ R, be the standard Sobolev spaces on S and
∂S, respectively. If q ∈ H̊

−1(S) and f ∈ H1/2(∂S), then the unique solvability of the
Dirichlet problem in S can easily be proved by standard variational methods [1]. In what
follows we consider only the case q = 0 because the general case may be reduced to this
one. The aim of this article is to present two versions (indirect and direct) of boundary
integral equations for the above problem. The indirect one follows from the representation
of the solution as a double-layer potential, whereas the direct one is obtained via a limiting
process in the Somigliana formula. Finally, we solve the ensuing boundary integral equations
approximately and compare the numerical results.

Remark 1 All the statements in this article are valid for much wider classes of domains.
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Thus, it suffices to assume that ∂S is a piecewise smooth curve of class C0,1 (Lipschitz
curve) which consists of a finite number of Lyapunov arcs.

Remark 2 A detailed description of the results on the unique solvability of the systems of
boundary integral equations in the allied equilibrium and oscillation problems of bending of
thin elastic plates with transverse shear deformation can be found in [2]–[4].

2. The Single-Layer and Double-Layer Potentials

Let D(x, y) be a matrix of fundamental solutions for the operator Z. A simple calculation
shows that

D(x, y) = (adjZ)(∂x)[t(x, y)I2],

where adjZ(∂x) is the matrix differential operator adjoint to Z acting on t(x, y) with respect
to x, I2 = diag {1, 1},

t(x, y) = −2[2πk(λ+ µ)]−1[K0(c1|x− y|)−K0(c2|x− y|)],

c21 = k/µ, c22 = k/(λ + 2µ), and K0 is the modified Bessel function of the second kind and
order zero [2]. We also introduce the matrix of singular solutions P (x, y) = [T (∂y)D(y, x)]T ,
where T (∂y) is the boundary stress operator

T =

(

(λ+ 2µ)ν1∂1 + µν2∂2 µν2∂1 + λν1∂2

λν2∂1 + µν1∂2 (λ+ 2µ)ν2∂2 + µν1∂1

)

acting on D(x, y) with respect to y and ν(x) = (ν1(x), ν2(x))
T is the unit outward normal

to ∂S. For each x ∈ R
2, we introduce the single-layer and double-layer potentials with

densities ϕ and ψ defined on ∂S by

(V ϕ)(x) =

∫

∂S

D(x, y)ϕ(y) ds(y),

(Wψ)(x) =

∫

∂S

P (x, y)ψ(y) ds(y),

respectively. If ϕ ∈ H
−1/2(∂S) and ψ ∈ H1/2(∂S), then V ϕ and Wψ are elements of

H1(S). Denoting by γ the trace operator that maps H1(S) continuously onto H1/2(∂S), we
introduce boundary operators V + and W+ by

V +ϕ = γ(V ϕ), W+ψ = γ(Wψ).

It is very easy to verify that V + is an integral operator with a weakly singular kernel and
W+ = − 1

2
I +W0, where I is the identity operator and W0 is an integral operator with a

singular kernel, which means that the corresponding integral is understood in the sense of
principal value.

Theorem 1 The operators V + and W+ define bijections

V + : H
−1/2(∂S)→ H1/2(∂S), W+ : H1/2(∂S)→ H1/2(∂S).
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3. Boundary Integral Equations

We begin with the indirect method in the Dirichlet problem and represent the solution in
the form

u(x) = (Wψ)(x), x ∈ S,

with an unknown density ψ. After the limiting transition of the point x to ∂S, we arrive at
the system of singular integral equations

W+ψ = f,

or, what is the same,
− 1

2
ψ +W0ψ = f. (1)

Theorem 2 For every prescribed f ∈ H1/2(∂S), system (1) has a unique solution ψ ∈
H1/2(∂S). In this case, u =Wψ ∈ H1(S) is the weak (variational) solution of the Dirichlet
problem.

We remark that the function ψ has no direct mechanical meaning.
We now turn to the direct version of the boundary integral equations in the same problem.

Proceeding just as in the derivation of the third Green formula in the harmonic case, we
obtain its analogue, called the Somigliana formula. For functions u ∈ C2(S) ∩ C1(S̄) such
that Zu = 0 in S, this formula is

∫

∂S

[D(x, y)(Tu)(y)− P (x, y)u(y)] ds(y) =

{

u(x), x ∈ S,
1

2
u(x), x ∈ ∂S.

(2)

Since in the Dirichlet problem we have γu = f , from (2) it follows that V +ϕ−W+f = f ,
or

V +ϕ =
(

1

2
I +W0

)

f, (3)

where ϕ = Tu. We point out that the density ϕ in (3) has direct mechanical significance,
being the boundary moment–stress vector for the plate, computed from the solution of
the Dirichlet problem. By Theorem 1, the operators occurring in (3) can be extended by
continuity to the corresponding Sobolev spaces.

Theorem 3 For every prescribed f ∈ H1/2(∂S), system (3) has a unique solution ϕ ∈
H
−1/2(∂S). In this case, u = V ϕ ∈ H1(S) is the weak (variational) solution of the Dirichlet

problem.

4. Numerical Example

Consider a square steel floor that occupies the region S̄ = [0, 1]× [0, 1]. Its Lamé coefficients
are λ = 1.141×108, µ = 8.262×107, and the elastic coefficient of the foundation is assumed
to be k = 4× 107. All units are given in SI (kg, m, sec). The boundary condition f = γu is

u(x1, 0) = (0, 0.01 sin(πx1))
T , u(x1, 1) = (0,−0.01 sin(πx1))

T ,
u(0, x2) = (−0.01 sin(πx2), 0)

T , u(1, x2) = (0.01 sin(πx2), 0)
T .
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Calculations were performed with the package MATHEMATICA, matrices D(x, y) and
P (x, y) were computed symbolically, the approximate solutions of the boundary integral
equations were obtained by means of cubic splines, and the Cauchy principal values were
computed with Gaussian quadrature. In the table below we present the values of uindi and
udiri , i = 1, 2, in the indirect and direct methods, respectively, at four points x in the plate.

x = (x1, x2) (0.125,0.375) (0.400,0.800) (0.750,0.125) (0.625,0.750)

uind1 −0.00740122 −0.00147556 0.00245106 0.00213585
udir1 −0.00740495 −0.00148554 0.00245310 0.00214173
uind2 0.00127837 −0.00623869 0.00586544 −0.00515366
udir2 0.00129751 −0.00624786 0.00581380 −0.00515675

5. Conclusions

As can be seen from the table, the results obtained from both the direct and indirect methods
are very close, coinciding to the 5th decimal place. This means that, computationally
speaking, there is very little to choose between the two methods. One has to bear in mind,
however, that the direct method is connected to the physics of the problem in the sense that
the unknown function in the integral equation represents the moment–stress vector on the
boundary of the domain.

The boundary integral equation technique has important applications in problems aris-
ing in continuum mechanics and other fields. It is general, elegant, and powerful in the sense
that, when distilled into a boundary element procedure, it generates very good approxima-
tions of the exact solution, with an exponential rate of convergence, much better than the
finite element method. For this reason, it is a useful tool in the hands of practitioners.
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