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Linear and Nonlinear Schrödinger Equations

on Simple Networks

Radu C. CASCAVAL and C. Travis HUNTER

Abstract. Recent theoretical developments in the study of initial-boundary
value problems for linear and nonlinear equations have motivated further studies
of interface problems for PDEs posed on networks. We investigate the scattering
(transmission and reflection) of pulses at interfaces and at bifurcations for the
nonlinear Schrödinger (NLS) equation, as a prototype model for bidirectional
wave propagation in physical media. NLS equation belongs to an entire class of
nonlinear models, called integrable models, for which an intimate relationship
exists between their solutions and the compatibility of a linear system (known
as the scattering problem). Numerical simulations of such models posed on net-
works indicate that, even when the underlying equations are genuinely nonlinear,
scattering at junctions still occurs in a linear fashion. This is consistent with
similar behavior observed in other nonlinear systems.

1 Introduction

Wave propagation phenomena on networks have received much attention in the applied
mathematics community lately. Among the notable areas of application are modeling the
pressure waves in the circulatory system ([1], [5], [10]), action potential in neurons ([15]),
and problems in traffic flow ([14]). One common focus of research in these application areas
is understanding the evolution of pulses along the network, in particular the reflection and
transmission of pulses at the junctions and their collective effect on the dynamics of an
incoming pulse.

In this study, the nonlinear Schrödinger (NLS) equation (see below) is chosen as a pro-
totype of the underlying evolution equation, posed on simple networks. Our choice was
made based on the fact that NLS admits localized pulses traveling in both directions, hence
it can support both transmitted and reflected pulses in the network. It is also among the
most studied among of the integrable systems. Note that in physical applications, such as
in optical communications, NLS often appears as a model for unidirectional evolution, with
role of the variables ’time’ t and ’space’ x interchanged. When posed on the real line, the
(focusing) nonlinear Schrödinger (NLS) equation

iqt + qxx + 2|q|2q = 0, x ∈ (−∞,∞), t ≥ 0, (1)

admits a family of special solutions, the one-solitons, which are of the form qa,c,x0
(x, t) =
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a sech[a(x − x0 − ct)]ei[
1
2
cx+(a2

− 1
4
c2)t] where a > 0 is the peak amplitude, c ∈ R is the

speed of the envelope pulse, x0 is the position of the center of mass at time t = 0. Other
special solutions (the N -solitons) can be obtained (e.g. via dressing methods) using the
Zakharov-Shabat operator

LΨ = i

(

d
dx −q
−q̄ − d

dx

)

Ψ, Ψ = Ψ(x, k) = [ψ1, ψ2]
T . (2)

In fact, (NLS) is the compatibility condition for the system of linear equations:

Ψx = −ik[σ3,Ψ] +Q(x, t)Ψ

Ψt = −2ik2[σ3,Ψ] + Q̃(x, t; k)Ψ,
(3)

where σ3 = diag{1,−1}, Q =

(

0 q

−q̄ 0

)

and Q̃(k) = 2kQ − iQxσ3 + i|q|2σ3, k ∈ C. The

first linear equation is another way of writing the eigenvalue problem for the operator L:
LΨ = kΨ, while the second describes the time evolution of the wave functions Ψ = Ψ(t, k).

The initial-boundary value problem for NLS turns out to be much more complicated due
to the loss of ’integrability’ at the boundary. Recent developments in this direction have
been able to overcome some of these difficulties and introduced new open problems [6], [13].
It turns out that a satisfactory inverse scattering framework can be effectively employed only
for certain boundary conditions (so-called linearizable boundary conditions for the half line
problem), such as homogeneous Dirichlet, Neumann or Robin conditions. In each of these
situations, the interaction of pulses with the boundary behaves more or less as expected
(complete or partial reflection, with a corresponding phase shift), and can be interpreted
using extensions to the full line problem and the presence of ’ghost’ pulses [4] in the exterior
of the domain.

In this paper we study a new type of boundary condition for the half-line problem. Our
primary objective is to understand how pulses interact with junctions in a network. It
has been observed in other systems (such as Benjamin-Bona-Mahony equation [5]) that this
interaction is (surprisingly) linear when the incoming and transmitted (reflected) speeds and
amplitudes are compared. It is the authors’ belief that the NLS context is the most natural
one in which to study this phenomenon and develop a theoretical underpinning to explain
it. This study is the first one in this effort. The layout of the paper is as follows: in Section
2 we introduce the relevant theory for the initial-boundary value problem on the half-line
for both linear and nonlinear Schrödinger equations. Section 3 presents the extension the
simple networks, such as Y-junctions, including a discussion on the well-posedness of this
problem. Section 4 details some preliminary numerical studies which illustrate the pulse
scattering phenomenon.

2 Half-Line Problem

2.1 Linear Schrödinger equation on the half-line

Consider first the linear Schrödinger equation on the half-line:

iqt + qxx = 0, x ∈ [0,∞), t > 0. (4)
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Given an initial data q(x, 0) = q0(x), x ≥ 0, with Fourier transform

q̂0(k) =

∫ ∞

0

e−ikxq0(x) dx, ℑk ≤ 0,

an integral representation formula for the solution of (4) is (see e.g. [12])

q(x, t) =
1

2π

∫ ∞

−∞

eikx−ik2tq̂0(k) dk −
1

2π

∫

∂D+

eikx−ik2tg̃(k, t) dk, (5)

where

g̃(k, t) =

∫ t

0

eik
2τ [kg0(τ)− ig1(τ)] dτ,

and ∂D+ is the boundary of the 1st quadrant in the complex plane parametrized such that
the domain remains on the left side. Here we use the notation for the Dirichlet and Neumann
boundary data at x = 0,

q(0, t) = g0(t), qx(0, t) = g1(t),

respectively. Note that the integral representation depends on both the Dirichlet and Neu-
mann boundary conditions. On the other hand, it is well-known that the initial-boundary
value problem for (4) is well posed by assigning only one type of boundary data, e.g. Dirich-
let:

iqt + qxx = 0, x ∈ [0,∞), t ∈ (0, T )
q(x, 0) = q0(x)

q(0, t) = g0(t) (Dirichlet boundary at x = 0),

in which case the other boundary condition becomes unknown in the representation formula
(5).

The Dirichlet-to-Neumann map can be derived, in the half-line case, using the global
relation of the Lax pair formulation of the linear Schrödinger equation (see [13] page 284).
More specifically,

g1(t) = qx(0, t) = −e−
iπ

4

[

− 1√
t

∫ ∞

0

e
ix

2

4t q′0(x) dx+
1√
π

∫ t

0

ġ0(τ)√
t− τ dτ

]

. (6)

The last term is the so-called fractional derivative of the boundary data g0. Recall the
definition of the Riemann-Liouville integral w.r.t t of (fractional) order α > 0, [18],

Iαf(t) =
1

Γ(α)

∫ t

0

f(τ)(t− τ)α−1 dτ

and its semigroup property

IαIβf(t) = Iα+βf(t), α, β > 0.

The fractional derivative (in the sense of Caputo) is defined as

∂
1/2
t f(t) := I1/2∂tf(t) =

1√
π

∫ t

0

∂τf(τ)√
t− τ dτ.
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2.2 Nonlinear Schrödinger equation on the half-line

The NLS on the half line R+ = [0,+∞) with prescribed Dirichlet boundary conditions

iqt + qxx + 2|q|2q = 0, x ∈ [0,∞), t ≥ 0, (7)

q(0, t) = g0(t), t ≥ 0, q(x, 0) = q0(x), x ≥ 0 (8)

is well-posed (see e.g. [8]) for sufficiently smooth and compatible initial and boundary con-
ditions. A scattering and inverse scattering transform has been developed recently (see [13]
and the reference herein.) It is formulated in terms of the Dirichlet data g0(t) = q(0, t) and
the Neumann data

g1(t) := qx(0, t),

the latter one not being prescribed in the problem, hence it needs to be treated as unknown
data. Thus, the key problem is: given g0(t) and q0(x), find an expression for g1(t). The
inverse problem is then reduced to a Riemann-Hilbert problem. For sake of brevity, we
include here only the details of constructing the Dirichlet-to-Neumann (DtN) map, referring
the reader to [13] for the problem of recovering the potential q(x, t) from the spectral data.

The case q0 ≡ 0: The following is a representation of the Dirichlet-to-Neumann map
for the case q0(x) ≡ 0 (see [7] Proposition 1 and [20]):

g1(t) = g0(t)M2(t, t)−
e−iπ/4

√
π

∫ t

0

∂τM1(t, 2τ − t)√
t− τ dτ

= g0(t)M2(t, t)− e−iπ/4∂1/2τ M1(t, 2τ − t)|τ=t. (9)

Here M1 = M1(t, s) and M2 = M2(t, s) (together with L1 = L1(t, s) and L2 = L2(t, s)) are
functions, defined on the domain Λ = {(t, s)| t ≥ 0,−t ≤ s ≤ t}, which satisfy the following
hyperbolic system























L1t − L1s = ig1(t)L2 + α(t)M1 + β(t)M2

L2t + L2s = ig1(t)L1 − α(t)M2 − β(t)M1

M1t −M1s = 2g0(t)L2 + ig1(t)M2

M2t +M2s = −2g0(t)L1 − iρg1(t)M1

(10)

with the coefficients

α(t) = −1
2
(g0g1 − g0g1), β(t) =

1

2
(iġ0 + |g0|2g0) (11)

and ’initial’ data

L1(t, t) =
i

2
g1(t), M1(t, t) = g0(t), L2(t,−t) =M2(t,−t) = 0 (12)

Finally, the functions L1,M1, L2,M2 are used in the Gelfand-Levitan-Marchenko represen-
tation of the wave function at the boundary x = 0:

Ψ(0, t, k) =

(

0

e2ik
2t

)

+

∫ t

−t

(

L1 − i
2g0(t)M2(t, s) + kM1(t, s)

L2 − i
2g0(t)M1(t, s) + kM2(t, s)

)

e2ik
2s ds.
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The general case q0(x): Remarkably, similar auxiliary functions Li,Mi, i = 1, 2 solving
the same system appear in the DtN map in the general case q0 6= 0 ([7] Proposition 3). Given
an (nonzero) initial condition q0(x) in the Schwartz class on R+, we define the spectral
functions a(k) and b(k) for k ∈ C

+ (with ℑk ≥ 0) as follows:

a(k) = ψ2(0, k), b(k) = ψ1(0, k),

where the vector Ψ = [ψ1, ψ2]
T is the unique solution of the system

ψ1,x = −ikψ1 + q0(x)ψ2

ψ2,x = −q̄0(x)ψ1 + ikψ2,

satisfying limx→∞ e−ikxΨ = [0, 1]T as x→∞. Denote

R(k) =
b(k)

a(k)
=
ψ1(0, k)

ψ2(0, k)
.

Then, the Dirichlet-to-Neumann map reads:

g1(t) =g0(t)M2(t, t)−
e−iπ/4

√
π

∫ t

0

∂τM1(t, 2τ − t)√
t− τ dτ +

4i

π
R1(t)

+ g0(t)
4

π

∫ t

0

R1(τ)M1(t, 2τ − t) dτ

+
8i

π

∫ t

0

R1(τ)L2(t, 2τ − t) +R2(τ)M2(t, 2τ − t) dτ.

(13)

Here we used, for convenience, the notations

R1(t) =

∫

∂D+

kR(k)e−4ik2t dk, R2(t) =

∫

∂D+

k2R(k)e−4ik2t dk,

the integration being counterclockwise on the boundary ∂D+ = (i∞, 0] ∪ [0,∞) of D+ =
{k ∈ C| ℜk ≥ 0,ℑk ≥ 0}, the first quadrant in the complex plan as before. This is in the
case that a(k) has no poles in D+. If a(k) has poles in D+, then the contour of integration
need to be chosen above all poles of a(k).

As expected, the DtN map (13) trivially reduces to (9) in the case q0(x) ≡ 0, since in
that case R(k) ≡ 0.

3 Simple Network Problem

In this section we extend the considerations in the previous section to the case of a finite
network, which is a collection of spatial edges e ∈ E connected at the vertices v ∈ V . We
denote N =

⋃

e∈E e the spatial domain of the network. The degree of a vertex, denoted
deg v, is the total number of edges which share v as an end-point. We need to specify
junction conditions at vertices of degree ≥ 2 and boundary conditions at vertices of degree
= 1 (also known as terminal conditions). We parametrize each edge ei of the network with
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either [0, li], if they have finite length li, or with a semi-axis [0,∞). This fixed but arbitrary
parameterization implies that we must make a choice of orientation for each edge. Since the
underlying equations we consider in this work don’t involve the first derivative operator, but
only the second derivative, the choice of the orientation can be made arbitrary. For simplicity
we assume the same (linear or nonlinear Schrödinger) equation governs the evolution on each
edge.

To be more specific, when the network is a simple Y-junction (see Figure 1) with one
vertex and three infinite edges, as depicted in the figure below, each edge is parametrized
so that it is identified with a semi-axis: parent edge is e1 = (−∞, 0] and the two daughter
edges e2 = e3 = [0,+∞).

Figure 1: NLS potential on a Y-junction

For this simple 3-edge junction, we consider the ’standard’ junction conditions at the vertex:

q(1)(0, t) = q(2)(0, t) = q(3)(0, t),

q(1)x (0, t) = q(2)x (0, t) + q(3)x (0, t).

To study the transmission and reflection of pulses originating in the parent edge, we assume
that initial conditions on the daughter edges are the same. Hence we identify the daughter
edges (two for the Y-junction) and assume the spatial domain is the entire real axis (−∞, 0]∪
[0,∞). Denote q(x, t) = q−(x, t) if x ≤ 0 and q(x, t) = q+(x, t) if x ≥ 0. At the interface we
have continuity but a ’jump’ in the left and right derivatives:

q−(0, t) = q+(0, t), q−x (0, t) = γq+x (0, t), γ = deg v − 1.

We will refer to this simplified situation as the interface problem below. It is also worth
mentioning that other junction conditions have been studied in [19], although they lead to
trivial (upon rescaling) bifurcations of incoming pulses.

3.1 Interface problem for the linear Schrödinger equation

Here we consider again the linear Schrödinger (LS) equation as the underlying equation.
More specifically, q satisfies the same equation (4) on both positive and negative semi-axis,
is continuous at x = 0 and has a jump in the derivative:

q−(0, t) = q+(0, t)

q−x (0, t) = γq+x (0, t).
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The interface problem can also be viewed as a forced LS equation on the real line, where
the (impulsive) forcing is occurring at the interface x = 0:

iqt + qxx = βδ0(x)qx,

with β = 2(γ−1)
γ+1 . Applying formula (6) for both semi-axis, we obtain:

0 = q−x (0, t)− γq+x (0, t)

= −e− iπ

4

[

− 1√
t

∫ 0

−∞

e
ix

2

4t q′0(x) dx+
γ√
t

∫ ∞

0

e
ix

2

4t q′0(x) dx+
1 + γ√
π

∫ t

0

ġ0(τ)√
t− τ dτ

]

,

so
∫ t

0

ġ0(τ)√
t− τ dτ =

√

π

t

[

1

γ + 1

∫ 0

−∞

e
ix

2

4t q′0(x) dx−
γ

γ + 1

∫ ∞

0

e
ix

2

4t q′0(x) dx

]

. (14)

Using the fact that I
1/2
t is the left inverse of ∂

1/2
t , one can also compute from (14) the

Dirichlet data

g0(t) = q(0, t) = I
1/2
t

[∫ t

0

ġ0(τ)√
t− τ dτ

]

.

From (6) and (14) we also derive the explicit representation for the Neumann data at the
interface (say for the x > 0 problem)

g1(t) = q+x (0, t) = −
e−

iπ

4√
t

1

γ + 1

∫ ∞

−∞

e
ix

2

4t q′0(x) dx. (15)

Finally, one uses the representation (5) to obtain q+(x, t), x > 0 and, similarly, q−(x, t), x <
0.

3.2 Interface problem for the nonlinear Schrödinger equation

The NLS equation with the standard junction and terminal conditions mentioned above is
well-posed on a finite network, but we postpone this discussion until the next section. Here
we present the analogous construction of the Dirichlet and Neumann data for the interface
NLS. As expected, we will employ the complicated DtN map derived for the initial boundary
value problem described in Sect 2.2. The goal of this section is to show how one can derive
the Dirichlet data (and hence the Neumann data on both sides) at the interface.

Consider the interface condition for NLS potentials q− and q+:

{

q−(0, t) = q+(0, t) [= g0(t)]

q−x (0, t) = γq+x (0, t) [= γg1(t)]

and the initial condition

q0(x) =

{

q−0 (x), x < 0

0, x ≥ 0
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supported on the left half-line (−∞, 0), that is q+0 (x) = 0, for all x ∈ [0,∞). For the
numerical studies in the next section, we will take as initial condition a soliton that is
sufficiently far away (to the left) and moving to the right, towards the interface.

For each of the half axis, we consider the auxiliary functions X− = [L−1 , L
−
2 ,M

−
1 ,M

−
2 ]

T

and X+ = [L+
1 , L

+
2 ,M

+
1 ,M

+
2 ]

T , which satisfy the following system of eight hyperbolic equa-
tions (written in the abbreviated form):

X−t − JX−s = [−γA(t) +B(t)]X−,

X+
t − JX+

s = [A(t) +B(t)]X+,
(16)

where we introduced the following 4× 4 block matrices:

J =

(

σ3 0
0 σ3

)

, A(t) =









0 ig1(t) α(t) 0

ig1(t) 0 0 −α(t)
0 0 0 ig1(t)

0 0 ig1(t) 0









,

B(t) =









0 0 0 β(t)

0 0 −β(t) 0
0 2g0(t) 0 0

−2g0(t) 0 0 0









.

Note that this notation is convenient since B depends only on the Dirichlet data g0(t),
while A depends in a linear fashion on the Neumann data g1(t). [Recall from (11) that
α(t) = − 1

2 (g0g1 − g0g1), β(t) = 1
2 (iġ0 + |g0|2g0)]. The negative sign in (16)1 in front of γ

comes from the fact that the Neumann data on the left half-line (−∞, 0] gets a minus sign
upon change of variables x→ −x.

Combining (9) written for [0,∞) and (13) for (−∞, 0] we obtain the following represen-
tation for g0(t):

g0(t) =
e−iπ/4∂1/2(M−

1 − γM+
1 )(t, t) +

4i
π R1(t) +

8i
π (R1 ∗s L−2 )(t) + (R2 ∗s M−

2 )(t)

(M−
2 − γM+

2 )(t, t) +
4
π (R1 ∗s M−

1 )(t)
(17)

Here, again, we used a simpified notation:

∂1/2f(t, t) = ∂1/2τ f(t, 2τ − t)|τ=t =
1√
π

∫ t

0

∂τf(t, 2τ − t)√
t− τ dτ

and the convolutions (Ri ∗s f)(t) =
∫ t

0
Ri(τ)f(t, 2τ − t) dτ , for i = 1, 2.

The right hand side of (17) is a function of t alone, assuming the system (16) has been
solved up to time t. For a fixed t, it is computed using only the values of the auxiliary
functions X− and X+ on the line segment Λt = {(t, s)| − t ≤ s ≤ t}. Then the Neumann
data is computed using (9):

g1(t) = g0(t)M
+
2 (t, t)− ∂1/2M+

1 (t, t). (18)

Consequently, the system (16)–(18) can be solved (at least locally) in time starting with the
initial conditions provided in (12). Global (in time) existence of solutions to this system
remains an open problem (see also [13]). Numerical approximations of solutions to the
system (16)–(18) are detailed in the last section.
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3.3 Finite network problem for NLS

In this section we discuss the NLS equation posed on a finite network (with finite or infinite
length edges).

iqt + qxx + 2|q|2q = 0, x ∈ N , t ≥ 0 (19)

where N =
⋃

e∈E e is the spatial domain of the finite network.
For any finite length terminal edge, we impose homogeneous boundary conditions, e.g.

Dirichlet or Neumann conditions. For infinite length terminal edges, we assume the solutions
(and its derivatives) decay at the infinite end, e.g. q, qx, qxx → 0 as x → ∞. Even the
more restrictive Schwartz class at the infinite end suffices for our purposes here, since,
for computational purposes, the infinite edges will be replaced by finite edges. Artificial
boundary conditions (ABCs) based on the DtN map will be imposed at those artificial
boundaries.

The following integrals (mass and energy) are conserved by the NLS equation when posed
on the finite network N :

I0(t) =

∫

N

|q|2 dx, I1(t) =

∫

N

|qx|2 − |q|4 dx.

The invariance easily follows from the identities

(|q|2)t = −2ℑ(q̄qx)x

(|qx|2 − |q|4)t = 2ℜ(q̄tqx)x,
which are satisfied by any NLS solution q = q(x, t). Hence, for each edge e ∈ E , connecting
vertices v1 to v2,

d

dt

∫

e

|q|2 dx = −2ℑ
∫

e

(q̄qx)x dx = −2(q̄qx)
∣

∣

∣

x=v2

x=v1
.

Adding over all the edges, we see

d

dt

∫

N

|q|2 dx =
∑

e∈E

d

dt

∫

e

|q(e)|2 dx = −2
∑

v∈V

q̄(e)(v)
∑

e,v∈e

q(e)x (v) = 0.

A similar computation shows that I1 is also conserved in time. Following techniques and
estimates similar to those presented in [8] we obtain that the network NLS problem is
globally well-posed. More precisely, the following result is obtained in [11]:

Global well-posedness of NLS on N . Given q0 ∈ H2(N ) satisfying the standard
junction conditions described above, the NLS system (19) has an unique classical solution
u ∈ C1([0,∞), L2(N )) ∩ C([0,∞), H2(N )).

While the proof of this result is omitted here due to space limitations, it is worth men-
tioning its implication on the construction presented in Secton 3.2 above . Indeed, the global
existence in time for the solution q(x, t), and in particular of the Dirichlet and Neumann
data g0(t) and g1(t), implies that the system of equations (16), given these data, is solvable
for all times t > 0, which avoids the delicate issues related to the global solvability of system
of the nonlinear, nonlocal hyperbolic equations (16)–(18).
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4 Numerical experiments

In this final section we present numerical results for the NLS equation posed on simple
networks. Among the numerous schemes used for discretizing the NLS equation, we have
chosen the celebrated Ablowitz-Ladik (AL) semi-discretization in space

iq̇j +
1

2h2
(qj+1 − 2qj + qj−1) + |qj |2(qj+1 + qj−1) = 0,

where h is the spatial mesh size of the uniform grid {xj}Nj=1 and qj = q(xj), j = 1, . . . N .
The AL scheme is known to be integrable, in the sense of the inverse scattering theory. Time
discretization was done via the 4th order Runge-Kutta method. An alternative approach
is to use the Crank-Nicolson discretization in time first, in particular the Besse relaxation
scheme introduced in [3], but we will not pursue this here, since from our experiments it
appears the same type of scattering is observed.

An initial NLS soliton is set up in the first (leftmost) segment and given an initial velocity
to the right towards the interface and second segment. The interface conditions are given
by:

q− = q+ and q−x = γq+x .

The derivative at the interface qN is approximated on the left side by the values at k + 1
points to the left (for the range of speeds and amplitudes simulated we considered k = 5):

q′N− =
∑k

j=0 αjqN−j and similarly on the right side q
′
N+ = −∑k

j=0 αjqN+j , where αj are
numerical weights computed as in [17]. Setting the left and right derivatives equal to each
other and solving for qN yields:

qN = − 1

(1 + γ)α0
[α1(γqN+1 + qN−1) + α2(γqN+2 + qN−2) + α3(γqN+3 + qN−3) + . . . ] .

Figure 2: The finite difference scheme uses an uniform grid at both sides of the interface.

Updating the value of qN with the value from the above calculation after each iteration
in time assures that the continuity conditions at the interface are satisfied. Two different
time snapshots are provided in Figure 3 below (before and after the interaction with the
interface, located in the middle of the x axis.)
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Figure 3: Scattering of pulses off the interface: Pulse moving right before interaction (left figure)

and transmitted and reflected pulses after interaction (right figure)

In the first set of numerical experiments, pulses of the same amplitude a = 2 but vary-
ing speeds c ∈ [5, 12] were launched from the left of the interface (recall that for the NLS
solutions speed and amplitude are two independent parameters). We observe that the trans-
mitted and reflected speeds computed indicate a linear relationship with the incident speed.
The slight departure from an exact linear relationship is attributed to the way the speeds
of the reflected waves are estimated, based on locating the peak of the transmitted and
reflected waves and the fact that a uniform grid is used.

Figure 4. Linear dependence of the speed of transmitted (left) and reflected (right) pulses to the

incoming speed. Amplitude of incoming pulse is kept constant (a = 2).

Subsequently, the amplitude of the incoming pulse was also varied. Results for various
values of initial amplitudes and speeds are displayed in the following figures, the lines rep-
resenting still the computed speeds for a given amplitude
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Figure 5. Same as in Figure 4, but results from different amplitudes a ∈ [1, 4] are being displayed.

The junction is set up in a similar fashion to the interface problem. Rather than two
segments, however, there are three. An initial soliton is again set up in the first (leftmost)
segment with an initial rightward velocity. At the interface, the continuity conditions are

q(1) = q(2) = q(3) and q
(1)
x = q

(2)
x + q

(3)
x where qn are the values at each each segment

just outside the junction. This time, however, each segment is calculated independently,
following the same kth order approximation for the derivatives at the junction and solving
for the updated junction value. After each time iteration the value at the junction for all
three segments is updated. The results are similar for the interface problem, with the only
change being noticed when the junction is asymmetric.

The code developed for the Y-junction problem above can be easily adapted to simulate
the NLS on finite number of edges in a network. Using the same procedures for calculating
the junction values, we obtain the following response function at a generic site in the network.

Figure 6: Temporal tracing of |q(·, t)| (left) at a generic site (marked by arrow) in a 7-edge tree (right)

We conclude with a remark on the discretization that can be done via the developments
presented in Section 2 and 3. The discretization of the fractional order operator is done as
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follows ([18], [20])

gn1 = gn0M
n
2,n − e−

iπ

4
2√
2∆t

n
∑

j=0

ωjM
n
1,n−j , where wj =







(2k)!

22k(k!)2
, j = 2k,

−wj−1 , j = 2k + 1.

The system of equations (16) is discretized using the Crank-Nicolson scheme on the lines
with slope 1 and -1 in the region Λ = {(t, s)| 0 ≤ t ≤ T,−t ≤ s ≤ t}. While the resolution of
the continuous time system is currently out of reach, the numerical implementation of these
schemes can be done with relative ease and will be reported elsewhere.

5 Conclusions

The study of initial-boundary value problems for nonlinear dispersive equations such as the
NLS posed on simple networks provides further insight into the nature of the scattering of
nonlinear pulses off junctions. The linear relationship between the transmitted and reflected
wave speeds to the incoming wave speed is a phenomenon that has been observed numerically
in this and other related studies. In the NLS context, because of the amplitudes and speeds
of incoming pulses can be chosen independent of each other, the phenomenology is much
more complex that that encountered in other equations. Further investigations are underway
as to whether the analytic approach involving the Dirichlet-to-Neumann map presented in
this study may lead to a theoretical interpretation of this linear scattering behavior, as
the fully numerical scattering experiments indicated above. In addition, more sophisticated
numerical schemes, such as the pseudo-spectral collocation method, and their stability and
convergence analyses, are being developed to better capture the dynamics of pulses near the
bifurcations.
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